Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning
文献类型: 外文期刊
第一作者: Zhang, Shanxin
作者: Zhang, Shanxin;Feng, Hao;Han, Shaoyu;Shi, Zhengkai;Xu, Haoran;Yue, Jibo;Han, Shaoyu;Liu, Yang;Feng, Haikuan;Zhou, Chengquan;Liu, Yang;Feng, Haikuan;Zhou, Chengquan
作者机构:
关键词: unmanned aerial vehicle; soybean; convolutional neural network; deep learning
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2023 年 13 卷 1 期
页码:
收录情况: SCI
摘要: Soybean breeders must develop early-maturing, standard, and late-maturing varieties for planting at different latitudes to ensure that soybean plants fully utilize solar radiation. Therefore, timely monitoring of soybean breeding line maturity is crucial for soybean harvesting management and yield measurement. Currently, the widely used deep learning models focus more on extracting deep image features, whereas shallow image feature information is ignored. In this study, we designed a new convolutional neural network (CNN) architecture, called DS-SoybeanNet, to improve the performance of unmanned aerial vehicle (UAV)-based soybean maturity information monitoring. DS-SoybeanNet can extract and utilize both shallow and deep image features. We used a high-definition digital camera on board a UAV to collect high-definition soybean canopy digital images. A total of 2662 soybean canopy digital images were obtained from two soybean breeding fields (fields F1 and F2). We compared the soybean maturity classification accuracies of (i) conventional machine learning methods (support vector machine (SVM) and random forest (RF)), (ii) current deep learning methods (InceptionResNetV2, MobileNetV2, and ResNet50), and (iii) our proposed DS-SoybeanNet method. Our results show the following: (1) The conventional machine learning methods (SVM and RF) had faster calculation times than the deep learning methods (InceptionResNetV2, MobileNetV2, and ResNet50) and our proposed DS-SoybeanNet method. For example, the computation speed of RF was 0.03 s per 1000 images. However, the conventional machine learning methods had lower overall accuracies (field F2: 63.37-65.38%) than the proposed DS-SoybeanNet (Field F2: 86.26%). (2) The performances of the current deep learning and conventional machine learning methods notably decreased when tested on a new dataset. For example, the overall accuracies of MobileNetV2 for fields F1 and F2 were 97.52% and 52.75%, respectively. (3) The proposed DS-SoybeanNet model can provide high-performance soybean maturity classification results. It showed a computation speed of 11.770 s per 1000 images and overall accuracies for fields F1 and F2 of 99.19% and 86.26%, respectively.
分类号:
- 相关文献
作者其他论文 更多>>
-
An automated lightweight approach for detecting dead fish in a recirculating aquaculture system
作者:Zhou, Chengquan;Wang, Chenye;Sun, Dawei;Hu, Jun;Ye, Hongbao;Wang, Chenye
关键词:YOLO; Dead fish; RAS; Image processing; Lightweight framework
-
End-to-end stereo matching network with two-stage partition filtering for full-resolution depth estimation and precise localization of kiwifruit for robotic harvesting
作者:Jing, Xudong;Jiang, Hanhui;Niu, Shiao;Zhang, Haosen;Murengami, Bryan Gilbert;Wu, Zhenchao;Li, Rui;Fu, Longsheng;Zhou, Chengquan;Ye, Hongbao;Chen, Jinyong;Fu, Longsheng;Fu, Longsheng;Fu, Longsheng;Majeed, Yaqoob
关键词:Two-stage partition filtering; Kiwifruit localization; LaC-Gwc Net; YOLOv8; Robotic harvesting
-
Enhancing practicality of deep learning for crop disease identification under field conditions: insights from model evaluation and crop-specific approaches
作者:Zhao, Gang;Feng, Hao;Yu, Qiang;Tian, Qi;Yao, Linjia;Zhao, Gang;Yan, Changqing;Qu, Junjie;Yin, Ling;Feng, Hao;Yao, Ning
关键词:crop diseases; agricultural application; deep learning; disease identification
-
Physiological Adaptation of Fenneropenaeus chinensis in Response to Saline-Alkaline Stress Revealed by a Combined Proteomics and Metabolomics Method
作者:Gao, Tian;Sun, Huarui;Liu, Yang;Gao, Tian;Wang, Qiong;Sun, Huarui;Li, Jitao;He, Yuying;Wang, Qiong;Li, Jitao;He, Yuying
关键词:Fenneropenaeus chinensis; proteomics; metabolomics; carbonate alkalinity stress; high pH stress
-
Comparative Transcriptome Analysis of the Hypothalamic-Pituitary-Gonadal Axis of Jinhu Grouper (Epinephelus fuscoguttatus ♀ x Epinephelus tukula ♂) and Tiger Grouper (Epinephelus fuscoguttatus)
作者:Qiu, Yishu;Duan, Pengfei;Ding, Xiaoyu;Li, Zhentong;Wang, Xinyi;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng
关键词:Jinhu grouper (Epinephelus fuscoguttatus female x Epinephelus tukula male); Epinephelus fuscoguttatus; gonadal development; transcriptome
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance