Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning
文献类型: 外文期刊
第一作者: Zhang, Shanxin
作者: Zhang, Shanxin;Feng, Hao;Han, Shaoyu;Shi, Zhengkai;Xu, Haoran;Yue, Jibo;Han, Shaoyu;Liu, Yang;Feng, Haikuan;Zhou, Chengquan;Liu, Yang;Feng, Haikuan;Zhou, Chengquan
作者机构:
关键词: unmanned aerial vehicle; soybean; convolutional neural network; deep learning
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2023 年 13 卷 1 期
页码:
收录情况: SCI
摘要: Soybean breeders must develop early-maturing, standard, and late-maturing varieties for planting at different latitudes to ensure that soybean plants fully utilize solar radiation. Therefore, timely monitoring of soybean breeding line maturity is crucial for soybean harvesting management and yield measurement. Currently, the widely used deep learning models focus more on extracting deep image features, whereas shallow image feature information is ignored. In this study, we designed a new convolutional neural network (CNN) architecture, called DS-SoybeanNet, to improve the performance of unmanned aerial vehicle (UAV)-based soybean maturity information monitoring. DS-SoybeanNet can extract and utilize both shallow and deep image features. We used a high-definition digital camera on board a UAV to collect high-definition soybean canopy digital images. A total of 2662 soybean canopy digital images were obtained from two soybean breeding fields (fields F1 and F2). We compared the soybean maturity classification accuracies of (i) conventional machine learning methods (support vector machine (SVM) and random forest (RF)), (ii) current deep learning methods (InceptionResNetV2, MobileNetV2, and ResNet50), and (iii) our proposed DS-SoybeanNet method. Our results show the following: (1) The conventional machine learning methods (SVM and RF) had faster calculation times than the deep learning methods (InceptionResNetV2, MobileNetV2, and ResNet50) and our proposed DS-SoybeanNet method. For example, the computation speed of RF was 0.03 s per 1000 images. However, the conventional machine learning methods had lower overall accuracies (field F2: 63.37-65.38%) than the proposed DS-SoybeanNet (Field F2: 86.26%). (2) The performances of the current deep learning and conventional machine learning methods notably decreased when tested on a new dataset. For example, the overall accuracies of MobileNetV2 for fields F1 and F2 were 97.52% and 52.75%, respectively. (3) The proposed DS-SoybeanNet model can provide high-performance soybean maturity classification results. It showed a computation speed of 11.770 s per 1000 images and overall accuracies for fields F1 and F2 of 99.19% and 86.26%, respectively.
分类号:
- 相关文献
作者其他论文 更多>>
-
An automated lightweight approach for detecting dead fish in a recirculating aquaculture system
作者:Zhou, Chengquan;Wang, Chenye;Sun, Dawei;Hu, Jun;Ye, Hongbao;Wang, Chenye
关键词:YOLO; Dead fish; RAS; Image processing; Lightweight framework
-
Design and Performance Analysis of a Sunflower Cutting Table Based on the Principle of Manual Disk Pick-Up
作者:Li, Bin;Gao, Xiaolong;Chen, Xuegeng;Li, Bin;Liu, Yang;Wang, Shiguo;Dong, Yuncheng
关键词:harvesting machinery; seed loss; response surface analysis; parameter optimization
-
Mapping Maize Planting Densities Using Unmanned Aerial Vehicles, Multispectral Remote Sensing, and Deep Learning Technology
作者:Shen, Jianing;Hu, Jingyu;Wang, Jian;Shu, Meiyan;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Zhao, Meng;Liu, Yang;Niu, Qinglin;Niu, Qinglin
关键词:maize planting density; object detection; machine learning; vegetation index; YOLO; GLCM
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Genomic insights into the seawater adaptation in Cyprinidae
作者:Wang, Ying;Zhang, Xuejing;Xiong, Fei;Zhou, Min;Wang, Jing;Wang, Cheng;Qian, Yuting;Meng, Minghui;Chen, Wenjun;Ding, Zufa;Yu, Dan;Liu, Yang;He, Shunping;Yang, Liandong;Wang, Ying;He, Shunping;Yang, Liandong;Wang, Cheng;Qian, Yuting;Chen, Wenjun;Ding, Zufa;Yu, Dan;Liu, Yang;Chang, Yumei;Wang, Ying;Yang, Liandong
关键词:Far Eastern dace; Migratory; Osmoregulation; Seawater adaptation
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Effects of Long-Term Cryopreservation on the Transcriptomes of Giant Grouper Sperm
作者:Ding, Xiaoyu;Tian, Yongsheng;Qiu, Yishu;Duan, Pengfei;Wang, Xinyi;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna
关键词:Epinephelus lanceolatus; sperm freezing damage; transcriptome analysis