Omics analysis of 'Shine Muscat' grape grafted on different rootstocks in response to cadmium stress

文献类型: 外文期刊

第一作者: Gu, Yafeng

作者: Gu, Yafeng;Fan, Xiaobin;Jiang, Ke;Liu, Pin;Cheng, Jieshan;Gu, Yafeng;Chang, Huiqing;Andom, Okbagaber;Li, Zhaojun

作者机构:

关键词: Rootstock-scion combination; Cd stress; Transcriptome; Metabolome

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:8.0; 五年影响因子:8.7 )

ISSN: 0048-9697

年卷期: 2024 年 936 卷

页码:

收录情况: SCI

摘要: Cadmium (Cd) is detrimental to grape growth, development, and fruit quality. Grafting is considered to be a useful method to improve plant adaptability to Cd stress in grape production. However, little information is available on how Cd stress affects grafted grapes. In this study, the effects of Cd on Shine Muscat grapes (Vitis vinifera L. cv. 'Shine Muscat') were studied under different "Cd treatments" concentrations (0, 0.2, 0.4, 0.8, 1.6, 3.2 mg kg-1) and "rootstock treatments" (SO4, 5BB, and 3309C). The results showed that low levels of Cd had hormesis effect and activated the grape antioxidant system to eliminate the ROS induced by Cd stress. The antioxidant capacity of the SM/3309C rootstock combination was stronger than that of the other two groups under low-concentration Cd stress. Moreover, the rootstock effectively sequestered a substantial amount of Cd, consequently mitigating the upward translocation of Cd to the aboveground portions. Transcriptomic and metabolomic analysis revealed several important pathways enriched in ABC transporters, flavonoid biosynthesis, Plant hormone signal transduction, phenylpropanoid biosynthesis, and glutathione metabolism under Cd stress. WGCNA analysis identified a hub gene, R2R3-MYB15, which could promote the expression of several genes (PAL, 4CL, CYP73A, ST, CHS, and COMT), and alleviate the damage caused by Cd toxicity. These findings might shed light on the mechanism of hormesis triggered by low Cd stress in grapes at the transcriptional and metabolic levels.

分类号:

  • 相关文献
作者其他论文 更多>>