Haplotype-resolved chromosome-level genome of hexaploid Jerusalem artichoke provides insights into its origin, evolution, and inulin metabolism

文献类型: 外文期刊

第一作者: Wang, Sen

作者: Wang, Sen;Wang, Anqi;Chen, Rong;Xu, Dong;Wang, Hengchao;Jiang, Fan;Liu, Hangwei;Qian, Wanqiang;Fan, Wei;Wang, Sen;Chen, Rong

作者机构:

关键词: Helianthus tuberosus; hexaploid genome; hybridization origin; chromosome rearrangement; inulin metabolism genes

期刊名称:PLANT COMMUNICATIONS ( 影响因子:10.5; 五年影响因子:10.5 )

ISSN: 2590-3462

年卷期: 2024 年 5 卷 3 期

页码:

收录情况: SCI

摘要: Jerusalem artichoke ( Helianthus tuberosus ) is a global multifunctional crop. It has wide applications in the food, health, feed, and biofuel industries and in ecological protection; it also serves as a germplasm pool for breeding of the global oil crop common sunflower ( Helianthus annuus ). However, biological studies of Jerusalem artichoke have been hindered by a lack of genome sequences, and its high polyploidy and large genome size have posed challenges to genome assembly. Here, we report a 21-Gb chromosome-level assembly of the hexaploid Jerusalem artichoke genome, which comprises 17 homologous groups, each with 6 pseudochromosomes. We found multiple large-scale chromosome rearrangements between Jerusalem artichoke and common sunflower, and our results show that the hexaploid genome of Jerusalem artichoke was formed by a hybridization event between a tetraploid and a diploid Helianthus species, followed by chromosome doubling of the hybrid, which occurred approximately 2 million years ago. Moreover, we identified more copies of actively expressed genes involved in inulin metabolism and showed that these genes may still be undergoing loss of function or sub- or neofunctionalization. These genomic resources will promote further biological studies, breeding improvement, and industrial utilization of Helianthus crops.

分类号:

  • 相关文献
作者其他论文 更多>>