First Report of the Molecular Mechanism of Resistance to Tribenuron-Methyl in Silene conoidea L.
文献类型: 外文期刊
第一作者: Sun, Ying
作者: Sun, Ying;Wei, Shouhui;Lan, Yuning;Cao, Yi;Huang, Hongjuan;Huang, Zhaofeng;Sun, Ying;Han, Yujun;Ma, Hong
作者机构:
关键词: Silene conoidea L.; acetolactate synthase (ALS); target-site-based resistance; metabolic resistance
期刊名称:PLANTS-BASEL ( 影响因子:4.658; 五年影响因子:4.827 )
ISSN:
年卷期: 2022 年 11 卷 22 期
页码:
收录情况: SCI
摘要: Silene conoidea L. is an annual troublesome broadleaf weed in winter wheat fields in China. In recent years, field applications of tribenuron-methyl have been ineffective in controlling S. conoidea in Hebei Province, China. The aim of this study was to determine the molecular basis of tribenuron-methyl resistance in S. conoidea. Whole-plant response assays revealed that the resistant population (R) exhibited a higher level of resistance (382.3-fold) to tribenuron-methyl. The R population also showed high cross-resistance to other acetolactate synthase (ALS) inhibitors, including imazethapyr, bispyribac-sodium and florasulam. However, the R population could be controlled by the field-recommended rates of bentazone, MCPA, fluroxypyr, carfentrazone-ethyl and bromoxynil. In vitro ALS activity assays indicated that the tribenuron-methyl I-50 value for the R population was 18.5 times higher than those for the susceptible population (S). ALS gene sequencing revealed an amino acid mutation, Trp-574-Leu, in the R population. Pretreatment with the P450 inhibitor malathion indicated that the R population might have cytochrome P450-mediated metabolic resistance. These results suggest that the Trp-574-Leu mutation and P450-mediated enhanced metabolism coexist in S. conoidea to generate tribenuron-methyl resistance. This is the first time that target-site and non-target-site resistance to tribenuron-methyl has been reported in S. conoidea.
分类号:
- 相关文献
作者其他论文 更多>>
-
Genomic Insights into Seed Germination Differences in Buffalobur (Solanum rostratum Dunal) under Contrasting GA and ABA Availability
作者:Chen, Zhaoxia;Li, Longlong;Wu, Kaidie;Zhao, Dandan;Yang, Long;Huang, Hongjuan;Huang, Zhaofeng;Wei, Shouhui
关键词:seed dormancy and germination; RNA-Seq; phytohormone; endo-beta-mannanase; endosperm cap
-
The Role of β3-Adrenergic Receptors in Cold-Induced Beige Adipocyte Production in Pigs
作者:Yang, Shuo;Yang, Xiuqin;Ma, Hong;Wang, Liang;Wang, Fang;Liu, Di;Xia, Jiqiao;Liu, Dongyu;Mu, Linlin
关键词:cold stress; piglets; ADRB3; beige adipocytes; thermogenesis
-
Network Meta-Analysis: Effect of Cold Stress on the Gene Expression of Swine Adipocytes ATGL, CIDEA, UCP2, and UCP3
作者:Guo, Zhenhua;Liu, Di;Ma, Hong;Wang, Liang;Fu, Bo;Wang, Fang;Lv, Lei
关键词:beige adipose tissue; fat; pig; UCP1
-
TAP2 Effect on Min-Pig Stromal Vascular Fraction Cell Gene Expression
作者:Wang, Liang;Liu, Di;Ma, Hong;Zhang, Dongjie;He, Xinmiao;Wang, Wentao;Fu, Bo;Li, Zhongqiu;Guo, Zhenhua
关键词:gene interference; gene overexpression; Min-pig; SVF cells; TAP2
-
Integrated metabolic phenotypes and gene expression profiles reveal enzymatic browning mechanism in postharvest chrysanthemum
作者:Yang, Dan;Zhu, Yuyun;Feng, Weihong;Chen, Sha;Zhang, Yongxin;Kang, Chen;Zhu, Jingjing;Liu, Shanshan;Wang, Wei;Zhang, Mei;Cai, Zhongqi;Wei, Shouhui
关键词:Chrysanthemum morifolium; Enzymatic browning; Molecular mechanism; Metabolomics; Browning product; Transcriptomics
-
Essential roles of the nucleolus during early embryonic development: a regulatory hub for chromatin organization
作者:Fu, Bo;Ma, Hong;Liu, Di;Fu, Bo;Ma, Hong;Liu, Di
关键词:preimplantation embryo; nucleolus precursor bodies; chromatin organization; Dux; totipotency; somatic cell nuclear transfer
-
Combination of S1-N-Terminal and S1-C-Terminal Domain Antigens Targeting Double Receptor-Binding Domains Bolsters Protective Immunity of a Nanoparticle Vaccine against Porcine Epidemic Diarrhea Virus
作者:Yang, Dan;Su, Mingjun;Guo, Donghua;Zhao, Feiyu;Wang, Meijiao;Liu, Jiaying;Zhou, Jingxuan;Sun, Ying;Yang, Xu;Qi, Shanshan;Li, Zhen;Zhu, Qinghe;Xing, Xiaoxu;Li, Chunqiu;Cao, Yang;Sun, Dongbo;Feng, Li
关键词:coronavirus; PEDV; nanoparticle vaccine; double receptor-binding domains; protective immunity