Involvement of Alfin-Like Transcription Factors in Plant Development and Stress Response
文献类型: 外文期刊
第一作者: Jin, Ruixin
作者: Jin, Ruixin;Yang, Haitao;Muhammad, Tayeb;Li, Xin;Tuerdiyusufu, Diliaremu;Wang, Baike;Wang, Juan;Jin, Ruixin;Wang, Juan;Li, Xin;Tuerdiyusufu, Diliaremu
作者机构:
关键词: Alfin-like transcription factors; structural characteristics; growth and development; abiotic stress
期刊名称:GENES ( 影响因子:3.5; 五年影响因子:3.9 )
ISSN:
年卷期: 2024 年 15 卷 2 期
页码:
收录情况: SCI
摘要: Alfin-like (AL) proteins are an important class of transcription factor (TF) widely distributed in eukaryotes and play vital roles in many aspects of plant growth and development. AL proteins contain an Alfin-like domain and a specific PHD-finger structure domain at the N-terminus and C-terminus, respectively. The PHD domain can bind to a specific (C/A) CAC element in the promoter region and affect plant growth and development by regulating the expression of functional genes. This review describes a variety of AL transcription factors that have been isolated and characterized in Arabidopsis thaliana, Brassica rapa, Zea mays, Brassica oleracea, Solanum lycopersicum, Populus trichocarpa, Pyrus bretschenedri, Malus domestica, and other species. These studies have focused mainly on plant growth and development, different abiotic stress responses, different hormonal stress responses, and stress responses after exposure to pathogenic bacteria. However, studies on the molecular functional mechanisms of Alfin-like transcription factors and the interactions between different signaling pathways are rare. In this review, we performed phylogenetic analysis, cluster analysis, and motif analysis based on A. thaliana sequences. We summarize the structural characteristics of AL transcription factors in different plant species and the diverse functions of AL transcription factors in plant development and stress regulation responses. The aim of this study was to provide a reference for further application of the functions and mechanisms of action of the AL protein family in plants.
分类号:
- 相关文献
作者其他论文 更多>>
-
Epigallocatechin-3-gallate-induced tolerance to cadmium stress involves increased flavonoid synthesis and nutrient homeostasis in tomato roots
作者:Wang, Yameng;Ahammed, Golam Jalal;Chen, Shuangchen;Wang, Yameng;Ge, Shibei;Shen, Keyin;Wang, Qianying;Wang, Wenli;Li, Xin;Gao, Haina
关键词:Heavy metal; Stress tolerance; Oxidative stress; Flavonoids; Nutrient homeostasis
-
Fertilizer Effects on the Nitrogen Isotope Composition of Soil and Different Leaf Locations of Potted Camellia sinensis over a Growing Season
作者:Guo, Zuchuang;Huang, Tao;Guo, Zuchuang;Li, Chunlin;Shao, Shengzhi;Rogers, Karyne M.;Yuan, Yuwei;Li, Xin;Rogers, Karyne M.;Li, Qingsheng;Li, Da;Guo, Haowei
关键词:tea plants; Camellia sinensis; fertilizer; nitrogen isotopes; leaf locations; temporal variation
-
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
作者:Hu, Jiahui;Yu, Qinghui;Hu, Jiahui;Wang, Juan;Muhammad, Tayeb;Yang, Tao;Li, Ning;Yang, Haitao;Yu, Qinghui;Wang, Baike
关键词:tomato; fruit ripening; metabolome; transcriptome; carotenoids; lycopene; ethenyl
-
Comprehensive genomic characterization and expression analysis of calreticulin gene family in tomato
作者:Muhammad, Tayeb;Yang, Tao;Wang, Baike;Yang, Haitao;Wang, Juan;Yu, Qinghui;Tuerdiyusufu, Diliaremu
关键词:tomato; CRT gene family; endoplasmic reticulum; bioinformatics; abiotic stress; gene expression
-
Species-specific IL-1β is an inflammatory sensor of Seneca Valley Virus 3C Protease
作者:Huang, Xiangyu;Zhao, Zhenchao;Chai, Lvye;Yan, Ya;Yuan, Ye;Wu, Lei;Li, Minjie;Jiang, Xiaohan;Li, Xin;Huang, Xiangyu;Zhao, Zhenchao;Chai, Lvye;Yan, Ya;Yuan, Ye;Wu, Lei;Li, Minjie;Jiang, Xiaohan;Li, Xin;Zhu, Cheng;Wang, Haiwei;Liu, Zheng;Li, Pingwei
关键词:
-
Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils
作者:Chen, Ning;Huang, Danyu;Liu, Xiantang;Zhou, Dongmei;Chen, Ning;Zeng, Yu;Wu, Tongliang;Fang, Guodong;Wang, Yujun;Wang, Juan;Liu, Guangxia;Gao, Yan
关键词:agricultural amendment; hydroxyl radicals; soil aggregate fractionation, paddy soil; organic contaminantattenuation
-
Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry
作者:Wang, Juan;Wang, Juan;Wei, Wei;Chen, Zi-Yun;Xiong, Tao;Xia, Luo-Yuan;Jiang, Jia-Fu;Zhu, Dai-Yun;Jia, Na;Cao, Wu-Chun;Du, Li-Feng;Zhang, Ming-Zhu;Xia, Luo-Yuan;Chen, Zi-Yun;Zhang, Xu;Li, Wen-Jun;Wang, Zhen-Fei
关键词: