Overexpression of ZmEXPA5 reduces anthesis-silking interval and increases grain yield under drought and well-watered conditions in maize
文献类型: 外文期刊
第一作者: Tao, Keyu
作者: Tao, Keyu;Lu, Yuncai;Tao, Keyu;Li, Yan;Hu, Yue;Li, Yongxiang;Zhang, Dengfeng;Li, Chunhui;He, Guanhua;Song, Yanchun;Shi, Yunsu;Li, Yu;Wang, Tianyu;Liu, Xuyang;Li, Yan
作者机构:
关键词: Maize (Zea mays L.); Drought; Anthesis-silking interval; Expansin; ZmEXPA5
期刊名称:MOLECULAR BREEDING ( 影响因子:3.1; 五年影响因子:3.1 )
ISSN: 1380-3743
年卷期: 2023 年 43 卷 12 期
页码:
收录情况: SCI
摘要: Drought is one of the major abiotic stresses affecting the maize production worldwide. As a cross-pollination crop, maize is sensitive to water stress at flowering stage. Drought at this stage leads to asynchronous development of male and female flower organ and increased interval between anthesis and silking, which finally causes failure of pollination and grain yield loss. In the present study, the expansin gene ZmEXPA5 was cloned and its function in drought tolerance was characterized. An indel variant in promoter of ZmEXPA5 is significantly associated with natural variation in drought-induced anthesis-silking interval. The drought susceptible haplotypes showed lower expression level of ZmEXPA5 than tolerant haplotypes and lost the cis-regulatory activity of ZmDOF29. Increasing ZmEXPA5 expression in transgenic maize decreases anthesis-silking interval and improves grain yield under both drought and well-watered environments. In addition, the expression pattern of ZmEXPA5 was analyzed. These findings provide insights into the genetic basis of drought tolerance and a promising gene for drought improvement in maize breeding.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integration of transcriptome, histopathology, and physiological indicators reveals regulatory mechanisms of largemouth bass ( Micropterus salmoides) in response to carbonate alkalinity stress
作者:Hua, Jixiang;Xi, Bingwen;Qiang, Jun;Hua, Jixiang;Tao, Yifan;Lu, Siqi;Li, Yan;Dong, Yalun;Jiang, Bingjie;Xi, Bingwen;Qiang, Jun
关键词:Micropterus salmoides; Carbonate alkalinity stress; Tissue damage; Serum biological chemistry; RNA-seq
-
Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton
作者:Zeng, Qing;Wang, Junjuan;Wang, Shuai;Lu, Xuke;Li, Yan;Ye, Wuwei;Yin, Zujun;Peng, Fanjia;Bakhsh, Allah;Qaraevna, Bobokhonova Zebinisso;Ye, Wuwei;Yin, Zujun
关键词:
-
Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land
作者:Ma, Changjian;Wang, Yue;Liu, Lining;Wang, Xuejun;Sun, Zeqiang;Li, Yan;Ma, Changjian;Wang, Yue;Wu, Wenbiao;Hou, Peng;Li, Bowen;Yuan, Huabin
关键词:Grain yield; Biomass yield; Fertilizer physiological efficiency; Coastal saline-alkali land
-
Comparative genomic analysis reveals the difference of NLR immune receptors between anthracnose-resistant and susceptible sorghum cultivars
作者:Zhang, Ji-Wei;Li, Jin-Yang;Yu, Zhi-Fan;Chang, Xin-Ya;Han, Jun-Ru;Xia, Jing-Yang;Kami, Yam Bahadur;Wang, He;Li, Yan;Wang, Wen-Ming;Sun, Yuan-Tao;Ni, Xian-Lin;Li, Ling;Wang, Song-Tao
关键词:Sorghum; Anthracnose; NLR receptor; Colletotrichum sublineola; Genetic variation; Differential gene expression
-
The role of the nitrate transporter NRT1.1 in plant iron homeostasis and toxicity on ammonium
作者:Li, Guangjie;Zhang, Lin;Wang, Yanqin;Li, Yan;Wang, Zhaoyue;Shi, Weiming;Kronzucker, Herbert J.;Kronzucker, Herbert J.;Chen, Gui
关键词:Ammonium toxicity; Iron; Nitrate; NRT1.1; Root growth
-
Context-dependent response of crop pests to landscape composition
作者:Yang, Long;Pan, Yunfei;Wyckhuys, Kris A. G.;Li, Minlong;Wang, Kaitao;Liu, Bing;Liu, Yangtian;Jia, Shuangshuang;Li, Qian;Li, Yan;Lu, Yanhui;Wyckhuys, Kris A. G.;Desneux, Nicolas
关键词:Agroecology; context dependency; ecological based pest management; ecological intensification; host quality
-
TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis
作者:Dong, Feiyan;Liu, Yide;Zhang, Huadong;Li, Yaqian;Chen, Sheng;Wang, Shuailei;Zhu, Zhanwang;Liu, Yike;Song, Jinghan;Li, Yan
关键词:Wheat;
TaSnRK3.23B ; Ectopic expression; Drought stress; CBL proteins