Transcriptomics and Metabolomics Reveal the Dwarfing Mechanism of Pepper Plants Under Ultraviolet Radiation

文献类型: 外文期刊

第一作者: Zhang, Zejin

作者: Zhang, Zejin;Liang, Ying;Tang, Li;Yan, Zhengnan;Ding, Xiangyu;Shen, Haoxu;Liu, Qi;Song, Jinxiu;Lu, Na

作者机构:

关键词: plant height; ultraviolet radiation; metabolic pathway; pepper; gibberellin

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 14 期

页码:

收录情况: SCI

摘要: As a globally significant economic crop, pepper (Capsicum annuum L.) plants display excessive plant height (etiolation) in greenhouse production under an undesirable environment, leading to lodging-prone plants with reduced stress resistance. In the present study, we provided supplementary ultraviolet-B (UV-B, 280-315 nm) light to pepper plants grown in a greenhouse to assess the influences of UV-B on pepper growth, with an emphasis on the molecular mechanisms mediated through the gibberellin (GA) signaling pathway. The results indicated that UV-B significantly decreased the plant height and the fresh weight of pepper plants. However, no significant differences were observed in the chlorophyll content of pepper plants grown under natural light and supplementary UV-B radiation. The results of the transcriptomic and metabolomic analyses indicated that differentially expressed genes (DEGs) were significantly enriched in plant hormone signal transduction and that UV radiation altered the gibberellin synthesis pathway of pepper plants. Specifically, the GA3 content of the pepper plants grown with UV-B radiation decreased by 39.1% compared with those grown without supplementary UV-B radiation; however, the opposite trend was observed in GA34, GA7, and GA51 contents. In conclusion, UV-B exposure significantly reduced plant height, a phenotypic response mechanistically linked to an alteration in GA homeostasis, which may be caused by a decrease in GA3 content. Our study elucidated the interplay between UV-B and gibberellin biosynthesis in pepper morphogenesis, offering a theoretical rationale for developing UV-B photoregulation technologies as alternatives to chemical growth inhibitors.

分类号:

  • 相关文献
作者其他论文 更多>>