A High Amount of Straw Pellets Returning Delays Maize Leaf Senescence, Improves Dry Matter Accumulation and Distribution, and Yield Increase in Northeast China

文献类型: 外文期刊

第一作者: Cheng, Meng

作者: Cheng, Meng;Zhang, Yiteng;Lv, Guoyi;Yu, Yang;Hao, Yubo;Jiang, Yubo;Han, Linjing;Qian, Chunrong;Cheng, Meng;Jiao, Feng;Pang, Huancheng

作者机构:

关键词: straw pellets; leaf senescence; dry matter accumulation and distribution; dry matter transport

期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 3 期

页码:

收录情况: SCI

摘要: Enhancing chlorophyll retention in maize leaves and prolonging the grain-filling duration constitute critical strategies for yield improvement in agricultural production systems. This study investigated the mechanistic relationship between yield enhancement pathways and the leaf senescence process induced by high-input straw pellets amendment. We analyzed the impact mechanisms of green leaf area dynamics and dry matter redistribution on yield during late reproductive stages, establishing theoretical foundations for yield optimization through intensive straw pellets incorporation. The study used the maize variety Jingnongke 728 as the experimental material. Based on previous research, four treatments were set up, including no straw returning (CK), chopped straw (15 t/ha) returning to the field (FS1), a large amount of chopped straw (75 t/ha) returning to the field (FS5), and a large amount of pelletized straw (75 t/ha) returning to the field (KL5), with four replicates. A two-year experimental design systematically assessed green leaf area index (GLAI), dry matter accumulation, distribution, translocation, yield components, and grain yield to explore the differences among various treatments under different straw returning amounts and returning forms. The study detected no significant differences between FS1 and CK. Although KL5 and FS5 delayed leaf senescence, FS5 significantly depressed green leaf area index (GLAI) at the R1 stage (silking), which results in it not having more effective photosynthetic area during late phenological phases. In dry matter dynamics, KL5 exhibited 5.52-25.71% greater pre-anthesis accumulation, 2.73-60.74% higher post-anthesis accumulation, and 9.48-25.76% elevated ear dry matter allocation relative to other treatments. KL5's post-anthesis assimilates contributed 2.43-17.02% more to grain development, concurrently increasing ear-to-total biomass ratio. Yield analysis ranked KL5 as the superior treatment with 0.68-25.15% yield advantage, driven by significantly enhanced kernel number per ear and 100-kernel mass, whereas FS5 displayed the lowest kernel count among all treatments. Returning 75 t/ha of straw pellets to the black soil area in Northeast China can significantly delay the senescence of maize leaves and increase the accumulation of dry matter after anthesis by maintaining the effective photosynthetic area of leaves in the later stage of growth, thereby achieving the goal of increasing yield. The research can offer a practical and novel approach for straw return in the black soil region of Northeast China and provide a new technological pathway for enhancing crop productivity.

分类号:

  • 相关文献
作者其他论文 更多>>