Soil organic carbon changes in China's croplands: A newly estimation based on DNDC model

文献类型: 外文期刊

第一作者: Ding, Wuhan

作者: Ding, Wuhan;Ding, Wuhan;Chang, Naijie;Kang, Jiahao;Yi, Xiaopei;Zhang, Jianfeng;Wang, Ligang;Li, Hu;Ding, Wuhan;Zhang, Guilong;Zhang, Jing

作者机构:

关键词: China; Cropland; DNDC; Soil organic carbon

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:9.8; 五年影响因子:9.6 )

ISSN: 0048-9697

年卷期: 2023 年 905 卷

页码:

收录情况: SCI

摘要: Soil Organic Carbon (SOC) in cropland represents a significant facet of the terrestrial ecosystem's carbon res-ervoirs, playing a pivotal role in global climate change mitigation efforts. Within the specific context of China, cropland SOC not only extends its implications beyond environmental impact but also serves as a critical factor in ensuring the stability and security of the nation's food supply. However, there is an ongoing argument about the changes in SOC and their spatial and temporal distribution patterns within China's croplands. In this study, we constructed a new county-level DNDC database for 2020, building upon 2003 research that quantified SOC stock in China's cropland using the DNDC model. Our aim was to assess the SOC storage and temporal changes of China's cropland in 2020 using same methodology to enhance estimation accuracy. The simulation results of the validated DNDC model revealed that the average SOC storage of China's croplands (0-30 cm) in 2020 was 6.02 Pg C, with the Northeast region contributing 23 % (1.37 Pg C). The SOC density in China varied from 18.55 to 152.57 t C ha-1, averaging at 49.65 t C ha-1. In 2020, China's cropland transitioned from a net loss of SOC in 2003 to a carbon sink, with cropland SOC density and SOC storage increased by 18.2 % and 21.6 % respectively.Notably, despite experiencing a loss of SOC compared to 2003, the Northeast region had the highest average SOC density in China. This study highlights that despite the increase in SOC density and storage in China's croplands over the last 17 years, there remains substantial potential for carbon sequestration given the current spatial distribution of SOC density's significant heterogeneity within China. The findings of this study offer data support for China's strategy to achieve food security and carbon neutrality.

分类号:

  • 相关文献
作者其他论文 更多>>