MECE: a method for enhancing the catalytic efficiency of glycoside hydrolase based on deep neural networks and molecular evolution

文献类型: 外文期刊

第一作者: Liu, Hanqing

作者: Liu, Hanqing;Luo, Huiying;Yao, Bin;Tian, Jian;Huang, Huoqing;Liu, Hanqing;Guan, Feifei;Liu, Tuoyu;Yang, Lixin;Fan, Lingxi;Liu, Xiaoqing;Wu, Ningfeng;Tian, Jian

作者机构:

关键词: MECE; Deep learning; Catalytic efficiency; Glycoside hydrolases; Feature extraction

期刊名称:SCIENCE BULLETIN ( 影响因子:18.9; 五年影响因子:14.2 )

ISSN: 2095-9273

年卷期: 2023 年 68 卷 22 期

页码:

收录情况: SCI

摘要: The demand for high efficiency glycoside hydrolases (GHs) is on the rise due to their various industrial applications. However, improving the catalytic efficiency of an enzyme remains a challenge. This investigation showcases the capability of a deep neural network and method for enhancing the catalytic efficiency (MECE) platform to predict mutations that improve catalytic activity in GHs. The MECE platform includes DeepGH, a deep learning model that is able to identify GH families and functional residues. This model was developed utilizing 119 GH family protein sequences obtained from the Carbohydrate-Active enZYmes (CAZy) database. After undergoing ten-fold cross-validation, the DeepGH models exhibited a predictive accuracy of 96.73%. The utilization of gradient-weighted class activation mapping (GradCAM) was used to aid us in comprehending the classification features, which in turn facilitated the creation of enzyme mutants. As a result, the MECE platform was validated with the development of CHIS1754-MUT7, a mutant that boasts seven amino acid substitutions. The kcat/Kmof CHIS1754-MUT7 was found to be 23.53 times greater than that of the wild type CHIS1754. Due to its high computational efficiency and low experimental cost, this method offers significant advantages and presents a novel approach for the intelligent design of enzyme catalytic efficiency. As a result, it holds great promise for a wide range of applications.(c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

分类号:

  • 相关文献
作者其他论文 更多>>