Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils
文献类型: 外文期刊
第一作者: Zhu, Zhenke
作者: Zhu, Zhenke;Zhou, Juan;Liu, Shoulong;Yuan, Hongzhao;Zhou, Ping;Wu, Jinshui;Ge, Tida;Zhu, Zhenke;Zhou, Juan;Liu, Shoulong;Yuan, Hongzhao;Zhou, Ping;Wu, Jinshui;Ge, Tida;Zhou, Juan;Wu, Jinshui;Shahbaz, Muhammad;Tang, Haiming;Zhang, Wenju;Alharbi, Hattan;Kuzyakov, Yakov;Kuzyakov, Yakov;Kuzyakov, Yakov
作者机构:
关键词: Microbial C:N imbalance; Enzyme activity; Long-term fertilization; Stoichiometric homeostasis; Soil organic C mineralization
期刊名称:APPLIED SOIL ECOLOGY ( 影响因子:4.046; 五年影响因子:4.884 )
ISSN: 0929-1393
年卷期: 2021 年 167 卷
页码:
收录情况: SCI
摘要: Labile carbon (C) inputs affect the soil carbon:nitrogen (C:N) ratio and microbial stoichiometric homeostasis, which control the intensity and direction of the priming effect (PE). Here, we clarified how soil microorganisms regulate enzyme production and PE to maintain the C:N stoichiometric balance. Specifically, we conducted an incubation experiment by adding C-13-labeled glucose to four long-term fertilized paddy soils: no fertilization; fertilization with mineral nitrogen, phosphorus, and potassium (NPK); NPK combined with straw; and NPK with manure (NPKM). After glucose addition, the dissolved organic carbon-to-ammonium (DOC:NF4+) ratio (24-39) initially increased, but subsequently decreased after day 2 following glucose exhaustion. In parallel, the microbial C:N imbalance [(DOC:NH4+):(microbial biomass C:microbial biomass N)] rapidly decreased from day 2 (4.6-7.2) to day 20 (<0.5). Thus, microorganisms became C limited after 20 days of incubation. Excess C, resulting from glucose addition, increased N-hydrolase (chitinase) production and N mining from soil organic matter (SOM) through positive PEs. However, C hydrolase beta-1,4-glucosidase and beta-xylosidase) activity increased, while that of N hydrolase (chitinase) decreased, following glucose exhaustion. Consequently, the C:N microbial biomass ratio increased as the DOC:NH4+ ratio decreased, leading to negative PEs. NPKM-fertilized soil had the largest cumulative PE (2.3% of soil organic carbon) because it had the highest microbial biomass and iron (Fe) reduction rate. Thus, this increased N mining from SOM maintained the microbial C:N stoichiometric balance. We concluded that soil microorganisms regulate C- and N-hydrolase production to control the intensity and direction of PE, maintaining the C:N stoichiometric balance in response to labile C inputs.
分类号:
- 相关文献
作者其他论文 更多>>
-
New vegetable field converted from rice paddy increases net economic benefits at the expense of enhanced carbon and nitrogen footprints
作者:He, Zhilong;Xu, Minggang;Zhang, Wenju;Wu, Lei;He, Zhilong;Zhang, Ying;Hu, Ronggui;Wu, Xian;Tang, Shuirong;Zhang, Ying;He, Zhilong;Wu, Lei
关键词:Newly converted vegetable field; Life cycle assessment; Carbon and nitrogen footprints; Net ecosystem economic benefit
-
Microplastics alter soil structure and microbial community composition
作者:Han, Lanfang;Chen, Liying;Chen, Qi 'ang;Zhang, Sibo;Chao, Liang;Cai, Yanpeng;Ma, Chuanxin;Feng, Yanfang;Kuzyakov, Yakov;Kuzyakov, Yakov;Sun, Ke;Rillig, Matthias C.;Rillig, Matthias C.
关键词:Microplastic contamination; Soil aggregation; Bacterial community structure; Microbial co-occurrence network; Soil health
-
De novo transcriptome assembly database for 100 tissues from each of seven species of domestic herbivore
作者:Wang, Yifan;Huang, Yiming;Wang, Limin;Chen, Ning;Yang, Qing-Yong;Zhou, Ping;Wang, Yifan;Zhen, Yongkang;Wang, Jiasheng;Wu, Feifan;Li, Chuang;Yu, Xiang;Zhang, Zhenbin;Chen, Yifei;Xue, Chun;Gu, Yalan;Huang, Weidong;Yan, Lu;Wei, Wenjun;Wang, Yusu;Zhang, Jinying;Zhang, Yifan;Sun, Yiquan;Ding, Luoyang;Wang, Mengzhi;Wang, Yifan;Li, Song;Huang, Yiming;Zhang, Linna;Liu, Dongxu;Yang, Zhiquan;Wang, Shengbo;Zhao, Xinle;Luo, Chengfang;Wang, Haodong;Yang, Qing-Yong;Huang, Yiming;Zhang, Linna;Liu, Dongxu;Yang, Zhiquan;Wang, Shengbo;Zhao, Xinle;Luo, Chengfang;Wang, Haodong;Yang, Qing-Yong;Shen, Yizhao;Bi, Congliang;Pool, Kelsey;Blache, Dominique;Maloney, Shane K.;Ding, Luoyang
关键词:
-
Maize straw increases while its biochar decreases native organic carbon mineralization in a subtropical forest soil
作者:Zhou, Jiashu;Zhang, Shaobo;Lv, Junyan;Zhang, Haibo;Cai, Yanjiang;Yu, Bing;Li, Yongfu;Zhang, Shaobo;Tang, Caixian;Fang, Yunying;Tavakkoli, Ehsan;Ge, Tida;Luo, Yu;White, Jason C.
关键词:Biochar; C-cycling genes; Priming effect; Soil organic C mineralization; Straw
-
Priming and balance of soil organic carbon differ with additive C:N ratios and long-term green manuring
作者:Xu, Qian;Yao, Zhiyuan;Chen, Yupei;Liu, Na;Teng, Zhuoran;Huang, Donglin;Shah, Tahir;Wang, Zhaohui;Zhang, Dabin;Gao, Yajun;Yao, Zhiyuan;Teng, Zhuoran;Cao, Weidong;Kuzyakov, Yakov;Kuzyakov, Yakov;Kuzyakov, Yakov;Zhao, Na;Wang, Zhaohui;Zhang, Dabin;Gao, Yajun
关键词:Cover crop; Priming effect; C:N ratio; C balance; C sequestration
-
"Qi Nan" agarwood restores podocyte autophagy in diabetic kidney disease by targeting EGFR signaling pathway
作者:Li, Ning;Liu, Xuenan;Duan, Yingling;Zhang, Yu;Lan, Tian;Wang, Hao;Dai, Haofu;Lan, Tian;Zhou, Ping
关键词:DKD; "QN" agarwood; Podocytes; Autophagy; EGFR
-
Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies
作者:Iqbal, Shahid;Gui, Heng;Schaefer, Douglas Allen;Iqbal, Shahid;Xu, Jianchu;Gui, Heng;Schaefer, Douglas Allen;Arif, Muhammad Saleem;Worthy, Fiona R.;Jones, Davey L.;Jones, Davey L.;Khan, Sehroon;Nadir, Sadia;Alharbi, Sulaiman Ali;Filimonenko, Ekaterina;Bu, Dengpan;Shakoor, Awais;Shakoor, Awais;Kuzyakov, Yakov;Kuzyakov, Yakov;Kuzyakov, Yakov;Xu, Jianchu
关键词:ecosystem response; emergingpollutant; nutrientcycling; soil health; soil organic matter