A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola

文献类型: 外文期刊

第一作者: Nie, Wenhan

作者: Nie, Wenhan;Wang, Sai;Huang, Jin;Wang, Peihong;Wu, Yan;Yiming, Ayizekeranmu;Liang, Jingling;Ahmad, Iftikhar;Fu, Luoyi;Zhu, Bo;Chen, Gongyou;Xu, Qin;He, Rui;Yuan, Junhua;Guo, Longbiao;Ahmad, Iftikhar;Nie, Wenhan;Wang, Sai;Huang, Jin;Wang, Peihong;Wu, Yan;Yiming, Ayizekeranmu;Liang, Jingling;Ahmad, Iftikhar;Fu, Luoyi;Zhu, Bo;Chen, Gongyou;Xu, Qin;He, Rui;Yuan, Junhua

作者机构:

关键词: A-to-I editing; Xanthomonas; ferric enterobactin; methyl-accepting chemotaxis protein

期刊名称:MICROBIOLOGY SPECTRUM ( 影响因子:9.043; 五年影响因子:8.113 )

ISSN: 2165-0497

年卷期: 2021 年 9 卷 2 期

页码:

收录情况: SCI

摘要: Iron is an essential element for the growth and survival of pathogenic bacteria; however, it is not fully understood how bacteria sense and respond to iron deficiency or excess. In this study, we show that xfeA in Xanthomonas oryzae pv. oryzicola senses extracytoplasmic iron and changes the hydrogen bonding network of ligand channel domains by adenosine-to-inosine (A-to-I) RNA editing. The frequency of A-to-I RNA editing during iron-deficient conditions increased by 76.87%, which facilitated the passage of iron through the XfeA outer membrane channel. When bacteria were subjected to high iron concentrations, the percentage of A-to-I editing in xfeA decreased, which reduced iron transport via XfeA. Furthermore, A-to-I RNA editing increased expression of multiple genes in the chemotaxis pathway, including methyl-accepting chemotaxis proteins (MCPs) that sense concentrations of exogenous ferrienterobactin (Fe-Ent) at the cytoplasmic membrane. A-to-I RNA editing helps X. oryzae pv. oryzicola move toward an iron-rich environment and supports our contention that editing in xfeA facilitates entry of a ferric siderophore. Overall, our results reveal a new signaling mechanism that bacteria use to adjust to iron concentrations. IMPORTANCE Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by the adenosine deaminase RNA-specific family of enzymes, is a frequent posttranscriptional modification in metazoans. Research on A-to-I editing in bacteria is limited, and the importance of this editing is underestimated. In this study, we show that bacteria may use A-to-I editing as an alternative strategy to promote uptake of metabolic iron, and this form of editing can quickly and precisely modify RNA and subsequent protein sequences similar to an "on/off" switch. Thus, bacteria have the capacity to use a rapid switch-like mechanism to facilitate iron uptake and improve their competitiveness.

分类号:

  • 相关文献
作者其他论文 更多>>