Synthetic, marine, light-driven, autotroph-heterotroph co-culture system for sustainable (3-caryophyllene production

文献类型: 外文期刊

第一作者: Chen, Wenchao

作者: Chen, Wenchao;Chen, Wenchao;Park, Young-Kyoung;Studena, Lucie;Hapeta, Piotr;Fu, Jing;Ledesma-Amaro, Rodrigo;Chen, Wenchao;Park, Young-Kyoung;Studena, Lucie;Hapeta, Piotr;Fu, Jing;Ledesma-Amaro, Rodrigo;Park, Young-Kyoung;Bell, David;Nixon, Peter J.

作者机构:

关键词: Artificial light-driven consortia; Marine cyanobacteria; Yarrowia lipolytica; Sucrose; (3-Caryophyllene; Metabolic engineering; Synthetic biology; Engineering biology; Bioproduction; Precision fermentation

期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.7; 五年影响因子:9.4 )

ISSN: 0960-8524

年卷期: 2024 年 410 卷

页码:

收录情况: SCI

摘要: Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce (3-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum (3-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.

分类号:

  • 相关文献
作者其他论文 更多>>