CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants

文献类型: 外文期刊

第一作者: Hao, Xinyuan

作者: Hao, Xinyuan;Tang, Junwei;Chen, Yao;Huang, Chao;Zhang, Weifu;Liu, Ying;Wang, Lu;Ding, Changqing;Yang, Yajun;Wang, Xinchao;Chen, Yao;Yue, Chuan;Liu, Ying;Dai, Wenhao;Horvath, David P.

作者机构:

关键词: bud dormancy; bud break; MADS-box; gene function; regulatory network; Camellia sinensis

期刊名称:PLANT JOURNAL ( 影响因子:5.7; 五年影响因子:7.0 )

ISSN: 0960-7412

年卷期: 2025 年 121 卷 1 期

页码:

收录情况: SCI

摘要: Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear. In the present study, a MADS-box transcription factor CsMADS27 was identified in tea plants. Gene and phenotype characterizations following ectopic overexpression and endogenous silencing experiments are consistent with a role for CsMADS27 in dormancy and sprouting in different tea cultivars. Furthermore, CsDJC23 was found to be a downstream target of CsMADS27 and implicated in bud sprouting. Based on yeast one-hybrid screening and comprehensive verification, CsCBF1 and CsZHD9 were identified as upstream transcriptional inhibitors and activators of CsMADS27, respectively, with the two proteins showing direct interactions and competitive binding effects. Histone acetylation (H3K27Ac) in the first exon and intron regions of CsMADS27 was associated with a positive role in CsMADS27 expression. These results revealed that CsMADS27 is a key transcription factor involved in the regulation of dormancy and bud break. Furthermore, the CsCBF1/CsZHD9-CsMADS27 module plays a critical role in sensing environmental factors and accurately regulating the growth and development of overwintering buds in tea plants.

分类号:

  • 相关文献
作者其他论文 更多>>