Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs

文献类型: 外文期刊

第一作者: Wei, Xia

作者: Wei, Xia;Shu, Ze;Wang, Ligang;Zhang, Tian;Zhang, Longchao;Hou, Xinhua;Yan, Hua;Wang, Lixian;Zhang, Tian

作者机构:

关键词: intramuscular fat; copy number variations; alternative splicing; PELP1; pig

期刊名称:ANIMALS ( 影响因子:3.231; 五年影响因子:3.312 )

ISSN: 2076-2615

年卷期: 2022 年 12 卷 11 期

页码:

收录情况: SCI

摘要: Simple Summary Copy number variation (CNV) is a type of variant that may influence meat quality of, for example intramuscular fat (IMF). In this study, a genome-wide association study (GWAS) was then performed between CNVs and IMF in a pig F2 resource population. A total of 19 CNVRs were found to be significantly associated with IMF. RNA-seq and qPCR validation results indicated that CNV150, which is located on the 3 ' UTR end of the proline, as well as glutamate and the leucine rich protein 1 (PELP1) gene may affect the expression of PELP1 alternative splices. We infer that the CNVR may influence IMF content by regulating the alternative splicing of the PELP1 gene and ultimately affects the structure of the PELP1 protein. These findings suggest a novel mechanistic approach for meat quality improvement in animals and the potential treatment of insulin resistance in human beings. Intramuscular fat (IMF) is a key meat quality trait. Research on the genetic mechanisms of IMF decomposition is valuable for both pork quality improvement and the treatment of obesity and type 2 diabetes. Copy number variations (CNVs) are a type of variant that may influence meat quality. In this study, a total of 1185 CNV regions (CNVRs) including 393 duplicated CNVRs, 432 deleted CNVRs, and 361 CNVRs with both duplicated and deleted status were identified in a pig F2 resource population using next-generation sequencing data. A genome-wide association study (GWAS) was then performed between CNVs and IMF, and a total of 19 CNVRs were found to be significantly associated with IMF. QTL colocation analysis indicated that 3 of the 19 CNVRs overlapped with known QTLs. RNA-seq and qPCR validation results indicated that CNV150, which is located on the 3 ' UTR end of the proline, as well as glutamate and the leucine rich protein 1 (PELP1) gene may affect the expression of PELP1 alternative splices. Sequence alignment and Alphafold2 structure prediction results indicated that the two alternative splices of PELP1 have a 23 AA sequence variation and a helix-fold structure variation. This region is located in the region of interaction between PELP1 and other proteins which have been reported to be significantly associated with fat deposition or insulin resistance. We infer that the CNVR may influence IMF content by regulating the alternative splicing of the PELP1 gene and ultimately affects the structure of the PELP1 protein. In conclusion, we found some CNVRs, especially CNV150, located in PELP1 that affect IMF. These findings suggest a novel mechanistic approach for meat quality improvement in animals and the potential treatment of insulin resistance in human beings.

分类号:

  • 相关文献
作者其他论文 更多>>