Evaluation of Deep Learning Segmentation Models for Detection of Pine Wilt Disease in Unmanned Aerial Vehicle Images
文献类型: 外文期刊
第一作者: Xia, Lang
作者: Xia, Lang;Zhang, Ruirui;Wen, Yao;Ding, Chenchen;Xia, Lang;Zhang, Ruirui;Wen, Yao;Ding, Chenchen;Chen, Liping;Li, Longlong;Yi, Tongchuan;Chen, Liping;Li, Longlong;Yi, Tongchuan;Xie, Chunchun
作者机构:
关键词: deep learning; image segmentation; pine wilt disease; infected pine DeepLabv3+; focal loss
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2021 年 13 卷 18 期
页码:
收录情况: SCI
摘要: Pine wilt disease (PWD) is a serious threat to pine forests. Combining unmanned aerial vehicle (UAV) images and deep learning (DL) techniques to identify infected pines is the most efficient method to determine the potential spread of PWD over a large area. In particular, image segmentation using DL obtains the detailed shape and size of infected pines to assess the disease's degree of damage. However, the performance of such segmentation models has not been thoroughly studied. We used a fixed-wing UAV to collect images from a pine forest in Laoshan, Qingdao, China, and conducted a ground survey to collect samples of infected pines and construct prior knowledge to interpret the images. Then, training and test sets were annotated on selected images, and we obtained 2352 samples of infected pines annotated over different backgrounds. Finally, high-performance DL models (e.g., fully convolutional networks for semantic segmentation, DeepLabv3+, and PSPNet) were trained and evaluated. The results demonstrated that focal loss provided a higher accuracy and a finer boundary than Dice loss, with the average intersection over union (IoU) for all models increasing from 0.656 to 0.701. From the evaluated models, DeepLLabv3+ achieved the highest IoU and an F1 score of 0.720 and 0.832, respectively. Also, an atrous spatial pyramid pooling module encoded multiscale context information, and the encoder-decoder architecture recovered location/spatial information, being the best architecture for segmenting trees infected by the PWD. Furthermore, segmentation accuracy did not improve as the depth of the backbone network increased, and neither ResNet34 nor ResNet50 was the appropriate backbone for most segmentation models.
分类号:
- 相关文献
作者其他论文 更多>>
-
Improving UASS pesticide application: optimizing and validating drift and deposition simulations
作者:Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Hewitt, Andrew
关键词:lattice Boltzmann method (LBM); unmanned aerial spraying systems (UASS); Pest management; pesticide drift and deposition; optimization
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
Trends in crop yield estimation via data assimilation based on multi-interdisciplinary analysis
作者:Cao, Hong;Zhao, Rongkun;Xia, Lang;Wu, Shangrong;Yang, Peng;Cao, Hong;Zhao, Rongkun;Xia, Lang;Wu, Shangrong;Yang, Peng
关键词:Yield simulation; Data assimilation; Remote sensing; Crop growth model; Crops
-
YOLO-detassel: Efficient object detection for Omitted Pre-Tassel in detasseling operation for maize seed production
作者:Yang, Jiaxuan;Zhang, Ruirui;Ding, Chenchen;Chen, Liping;Xie, Yuxin;Ou, Hong;Yang, Jiaxuan;Zhang, Ruirui;Ding, Chenchen;Chen, Liping;Xie, Yuxin;Ou, Hong;Yang, Jiaxuan;Chen, Liping
关键词:Detasseling; Object detection; UAV; Deep learning; Maize hybrid seed production
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Effect of pesticide application techniques on thrips control in the cowpea flowering stage
作者:Jin, Ye;Luo, Luna;Zhong, Yuan;Xu, Shaoqing;Song, Jianli;Jin, Ye;Luo, Luna;Zhong, Yuan;Xu, Shaoqing;Song, Jianli;Zhang, Ruirui;Li, Zhiquan;Liu, Min;Zhong, Yuan
关键词:cowpea thrips; adjuvant; air-assisted spray; application technique