Magnolol protects C6 glioma cells against neurotoxicity of FB1 via modulating PI3K/Akt and mitochondria-associated apoptosis signaling pathways

文献类型: 外文期刊

第一作者: Wang, Yingjie

作者: Wang, Yingjie;Cheng, Dai;He, Jingjing;Liu, Sijia;Wang, Xinlu;Wang, Meng

作者机构:

关键词: Fumonisin B1; Magnolol; Neurotoxicity; PI3K/Akt pathway; Apoptosis

期刊名称:ENVIRONMENTAL POLLUTION ( 影响因子:7.3; 五年影响因子:8.1 )

ISSN: 0269-7491

年卷期: 2025 年 372 卷

页码:

收录情况: SCI

摘要: Fumonisin B1 (FB1) is a contaminant commonly occurring in crops and food. Mycotoxin contamination, including FB1, has been progressively shown to be an important risk factor in mediating neurotoxicity and neurodegenerative diseases. Studies have found that magnolol (MAG) exhibits favorable pharmacological effects in the central nervous system. However, the protective effects of MAG against FB1-induced neurotoxicity and the molecular pathways involved have not been fully elucidated. Our study aimed to investigate the neuroprotective effects of MAG on FB1-exposed C6 cells and to identify the underlying mechanisms. A model of FB1-induced cytotoxicity in C6 glial cells was established. C6 cells were treated with MAG (40, 80 and 160 mu M) in the presence/absence of FB1 (15 mu M) and then assessed for cell viability, cellular and mitochondrial morphology and oxidative stress. The mechanism of action of MAG was revealed using a variety of means including RNA-seq, qRT-PCR, Western blot, immunofluorescence, scanning electron microscopy analysis and agonist validation experiments. Our results indicated that MAG significantly alleviated AFB1-induced C6 astroglial cytotoxicity, as evidenced by elevated cell viability and restoration of overall cellular and mitochondrial morphology. Meanwhile, MAG also alleviated oxidative stress in FB1-exposed C6 cells, with 80 mu M MAG showing the best effect. Transcriptome analysis showed that PI3K/Akt and apoptosis involved in it might be the key pathway for MAG to treat FB1 neurotoxicity. MAG suppressed FB1-induced mitochondria-dependent apoptosis in C6 cells, primarily manifested by reduced apoptosis rate and reversal of apoptosis-associated protein expression. It was verified that MAG restored the expression of p-PI3K and p-Akt in FB1-treated cells and reversed the downstream effectors IKKa and NF-KB via measurement of related protein levels. The rescue experiment using Akt pathway activator (SC79) was further confirmed that activation of the PI3K/Akt signaling pathway is an effective strategy for MAG to mitigate FB1-induced cytotoxicity in C6 astroglial cells.

分类号:

  • 相关文献
作者其他论文 更多>>