Genetic Diversity of Populations of Saccharum spontaneum with Different Ploidy Levels Using SSR Molecular Markers

文献类型: 外文期刊

第一作者: Liu, X. L.

作者: Liu, X. L.;Deng, Z. H.;Liu, X. L.;Li, X. J.;Xu, C. H.;Lin, X. Q.;Liu, X. L.;Li, X. J.;Xu, C. H.;Lin, X. Q.

作者机构:

关键词: Saccharum spontaneum;Polyploidy;Genetic diversity;SSR

期刊名称:SUGAR TECH ( 影响因子:1.591; 五年影响因子:1.688 )

ISSN: 0972-1525

年卷期: 2016 年 18 卷 4 期

页码:

收录情况: SCI

摘要: Saccharum spontaneum L. plays a key role in the improvement of stress resistance and yield of sugarcane cultivars by serving as wild parent sources, especially lines of different ploidy. To better understand the genetic diversity and potential breeding value of S. spontaneum with different ploidy levels, 62 clones from four ploidy types (2n = 64, 72, 80, and 96) were screened using 30 pairs of SSR primers and with population genetics methods. The results showed that the decaploid and octaploid populations had a higher diversity than nonaploid and dodecaploid populations at 30 SSR loci with > 98 % percentage of polymorphic bands and > 0.92 polymorphic information content. Both the octaploid and decaploid populations shared more common bands with commonly used parents than the nonaploid or dodecaploid populations. The analysis of Nei's genetic distance and UPGMA tree indicates that the decaploid population had the closest genetic relationship with the octaploid population and that the two populations had a close genetic relationship with commonly used parents (controls). According to the population divergence analysis, the four different ploidy populations did not show an obvious genetic divergence (Gst) (0.0880), but clearly had large amounts of gene flow (Nm) (5.1840). Octaploid and decaploid populations appeared to have undergone more genetic exchange with commonly used parents, as indicated by the low Gst value (0.1254 and 0.1276) and high Nm value (3.4872 and 3.4186). These results may provide important insight into utilizing the diversity of clones with different ploidy levels in S. spontaneum for future sugarcane breeding.

分类号:

  • 相关文献

[1]Genetic Diversity of Source Germplasm of Upland Cotton in China as Determined by SSR Marker Analysis. CHEN Guang,DU Xiong-Ming. 2006

[2]GENETIC DIVERSITY OF CHINESE WILD GRAPE SPECIES BY SSR AND SRAP MARKERS. Liu, Chonghuai,Feng, Jiancan,Liu, Chonghuai,Fan, Xiucai,Jiang, Jianfu,Sun, Haisheng,Zhang, Ying,Guo, Dalong.

[3]Genetic diversity assessment using simple sequence repeats (SSR) and sequence-related amplified polymorphism (SRAP) markers in ramie. Luan, Ming-Bao,Zhu, Juan-Juan,Wang, Xiao-Fei,Xu, Ying,Sun, Zhi-Min,Chen, Jian-Hua,Zou, Zi-Zheng.

[4]Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR. Zhang, Hongliang,Sun, Junli,Wang, Meixing,Liao, Dengqun,Zeng, Yawen,Shen, Shiquan,Yu, Ping,Mu, Ping,Wang, Xiangkun,Li, Zichao.

[5]Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers. Che, Yonghe,Yang, Yanping,Yang, Xinming,Li, Xiuquan,Li, Lihui.

[6]Genetic diversity and relationships among loose-curd cauliflower and related varieties as revealed by microsatellite markers. Zhao, Zhenqing,Cao, Jiashu,Zhao, Zhenqing,Gu, Honghui,Sheng, Xiaoguang,Yu, Huifang,Wang, Jiansheng,Zhao, Junwei.

[7]Genetic diversity of the rice bean (Vigna umbellata) genepool as assessed by SSR markers. Tian, J.,Isemura, T.,Kaga, A.,Vaughan, D. A.,Tomooka, N..

[8]Characterization and utilization of microsatellites in the Coffea canephora genome to assess genetic association between wild species in Kenya and cultivated coffee. Ogutu, Collins,Fang, Ting,Wang, Lu,Ma, Baiquan,Deng, Xianbao,Owiti, Albert,Han, Yuepeng,Ogutu, Collins,Owiti, Albert,Han, Yuepeng,Yan, Lin,Huang, Lifang,Wang, Xiaoyang,Ogutu, Collins,Fang, Ting,Ma, Baiquan,Owiti, Albert,Nyende, Aggrey. 2016

[9]Study on the Genetic Diversity of Natural Chestnut Populations in Shandong China by SSR Markers. Ai Cheng-xiang,Li Guo-tian,Zhang Li-si,Liu Qing-zhong. 2009

[10]Genome composition and genetic diversity of Musa germplasm from China revealed by PCR-RFLP and SSR markers. Ning, Shu-Ping,Xu, Lin-Bing,Lu, Yan,Huang, Bing-Zhi,Ge, Xue-Jun. 2007

[11]Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia. Long, Bo,Long, Chunlin,Aierken, Yasheng,Akashi, Yukari,Phan Thi Phuong Nhi,Halidan, Yikeremu,Nishida, Hidetaka,Kato, Kenji,Aierken, Yasheng,Wu, Min Zhu,Tanaka, Katsunori. 2011

[12]An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Zhang, XY,Li, CW,Wang, LF,Wang, HM,You, GX,Dong, YS. 2002

[13]Identification and Analysis of Genetic Diversity Structure Within Pisum Genus Based on Microsatellite Markers. Zong Xu-xiao,Guan Jian-ping,Wang Shu-min,Ford, Rebecca,Redden, Robert R.. 2009

[14]Simple Sequence Repeat Assessment of Genetic Diversity among Wild Populations of Chinese Chestnut. Huang, W. G.,Cheng, L. L.,Hu, G. L.,Zhou, Z. J.. 2014

[15]Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Xiao, Yong,Luo, Yi,Yang, Yaodong,Fan, Haikuo,Xia, Wei,Zhao, Songlin,Qiao, Fei,Fan, Haikuo,Sager, Ross,Mason, Annaliese S.,Mason, Annaliese S.. 2013

[16]Genetic Diversity Analysis of Pepper Inbred Lines. Liu, Ziji,Yang, Yan,Cao, Zhenmu. 2015

[17]Analysis of Genetic Diversity and Population Structure of Sesame Accessions from Africa and Asia as Major Centers of Its Cultivation. Dossa, Komivi,Wei, Xin,Zhang, Yanxin,Yang, Wenjuan,Liao, Boshou,Zhang, Xiurong,Dossa, Komivi,Wei, Xin,Fonceka, Daniel,Cisse, Ndiaga,Zhang, Xiurong,Fonceka, Daniel,Diouf, Diaga. 2016

[18]Genetic diversity of Agropyron mongolicum Keng indigenous to northern China. Che Yong-He,Yang Yan-Ping,Yang Xin-Ming,Li Xiu-Quan,Li Li-Hui. 2011

[19]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[20]An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: Information from 96 random accessions with maximized genetic diversity. You, GX,Zhang, XY,Wang, LF. 2004

作者其他论文 更多>>