Identification of QTLs for resistant starch and total alkaloid content in brown and polished rice

文献类型: 外文期刊

第一作者: Zeng, Y. W.

作者: Zeng, Y. W.;Du, J.;Pu, X. Y.;Yang, S. M.;Yang, X. M.;Yang, T.;Sun, D.;Yang, J. Z.

作者机构:

关键词: Resistant starch;Total alkaloids;Quantitative trait locus;Brown and polished rice

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2016 年 15 卷 3 期

页码:

收录情况: SCI

摘要: An F-3 population consisting of 117 F-2:3 families derived from a cross between two varieties of rice, Gongmi No. 3 and Diantun 502, with a large difference in their resistant starch and total alkaloid content, was used for quantitative trait locus (QTL) mapping. Two QTLs of resistant starch for rice (qRS7-1, qRS7-2) were identified in a linkage group on chromosome 7, which could explain phenotypic variance from 7.6 to 17.3%, due to additive effects for resistant starch from Gongmi No. 3 or over-dominance effects for qRS7-2 of the marker interval (RM3404-RM478) on chromosome 7 from Gongmi No. 3, accounting for 13.8-17.3% of the phenotypic variance. Two QTLs of total alkaloids for brown rice (qALb7-1, qALb7-2) were identified in the same linkage group, which could explain phenotypic variance from 7.7 and 19.3%, respectively, due to dominance or over-dominance effects for total alkaloids on chromosome 7 from Diantun 502. To our knowledge, these are the first QTLs to be identified, which are related to resistant starch and total alkaloid content in rice. These results are beneficial for understanding the genetic basis of, as well as for developing markers linked with, resistant starch and total alkaloids of functional components for marker-assisted selection breeding in rice.

分类号:

  • 相关文献

[1]A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. Yang, Ruifang,Bai, Jianjiang,Fang, Jun,Piao, Zhongze,Wang, Ying,Lee, Gangseob.

[2]Starch structure and digestibility of rice high in resistant starch. Shu, Xiaoli,Jiao, Guiai,Fitzgerald, Melissa A.,Yang, Chaozhu,Shu, Qingyao,Wu, Dianxing.

[3]Genome-wide association study of the resistant starch content in rice grains. Bao, Jinsong,Xu, Feifei,He, Qiang,Park, Yong-Jin,Bao, Jinsong,Zhou, Xin,Xu, Feifei,Xu, Feifei,Park, Yong-Jin.

[4]Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Zheng, Yafeng,Wang, Qi,Li, Baoyu,Lin, Liangmei,Zheng, Baodong,Xiao, Jianbo,Zheng, Yafeng,Li, Baoyu,Lin, Liangmei,Zheng, Baodong,Wang, Qi,Tundis, Rosa,Loizzo, Monica R..

[5]DNA fingerprint and determination of functional components for rice with diabetes prevention. Zeng, Yawen,Du, Juan,Pu, Xiaoying,Yang, Shuming,Yang, Tao. 2013

[6]In vitro measurement of resistant starch of cooked milled rice and physico-cheMical characteristics affecting its formation. Zhang, Wenwei,Bi, Jingcui,Yan, Xiaoyan,Wang, Hailian,Zhu, Changlan,Wang, Hankang,Wan, Jianmin. 2007

[7]The Zonal Characteristics and Cultivated Types Difference of Functional Components in Brown Rice for Core Collection of Yunnan Rice. Zeng Ya-wen,Du Juan,Yang Shu-ming,Pu Xiao-ying,Yang Tao,Zeng Ya-wen,Wang Yu-chen,Sun Zheng-hai,Xin Pei-yao. 2010

[8]Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Hu, PS,Zhao, HJ,Duan, ZY,Zhang, LL,Wu, DX. 2004

[9]Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model. Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an,Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an,Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an,Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an. 2016

[10]Analysis of resistant starch degradation in postharvest ripening of two banana cultivars: Focus on starch structure and amylases. Gao, Huijun,Huang, Shaobo,Dong, Tao,Yang, Qiaosong,Yi, Ganjun.

[11]QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Li, Xingmao,Xia, Xianchun,Xiao, Yonggui,He, Zhonghu,Wang, Desen,Chen, Xinmin,Li, Xingmao,He, Zhonghu,Trethowan, Richard,Wang, Huajun.

[12]Identification of QTLs with main, epistatic and QTL by environment interaction effects for seed shape and hundred-seed weight in soybean across multiple years. Liang, Huizhen,Xu, Lanjie,Yu, Yongliang,Yang, Hongqi,Dong, Wei,Zhang, Haiyang.

[13]Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Zhang, Xiaoqin,Wang, Huizhong,Qian, Qian,Xue, Dawei,Zhang, Xiaoqin,Zhang, Guoping,Guo, Longbiao,Zeng, Dali,Dong, Guojun,Qian, Qian.

[14]Validation and dissection of quantitative trait loci for leaf traits in interval RM4923-RM402 on the short arm of rice chromosome 6. Shen, Bo,Yu, Wei-Dong,Du, Jing-Hong,Fan, Ye-Yang,Wu, Ji-Rong,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong,Du, Jing-Hong,Fan, Ye-Yang,Wu, Ji-Rong,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong,Du, Jing-Hong.

[15]Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Wang, Jin,Liao, Xiangzheng,Li, Yulian,Zhou, Ronghua,Gao, Lifeng,Jia, Jizeng,Wang, Jin,Yang, Xueju.

[16]Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize. Hao, Z.,Liu, X.,Li, X.,Xie, C.,Li, M.,Zhang, D.,Zhang, S.,Hao, Z.,Xu, Y..

[17]Construction of a high-density SNP genetic map in fluecured tobacco based on SLAF-seq. Gong, Daping,Xu, Xiuhong,Wang, Chuanyi,Ren, Min,Wang, Chunkai,Chen, Mingli,Huang, Long,Xu, Xiuhong,Wang, Chunkai,Wang, Chunkai.

[18]Locating QTLs controlling several adult root traits in an elite Chinese hybrid rice. Cao, Li Yong.

[19]Identification of QTLs for seed dormancy in rice (Oryza sativa L.). Xie, Kun,Jiang, Ling,Lu, BingYue,Yang, ChunYan,Li, LinFang,Liu, Xi,Zhang, Long,Zhao, ZhiGang,Wan, JianMin,Wan, JianMin.

[20]Saturation and mapping of a major Fusarium head blight resistance QTL on chromosome 3BS of Sumai 3 wheat. Zhou, M-P.,Lu, W-Z.,Ma, H-X.,Hayden, M. J.,Zhang, Z-Y..

作者其他论文 更多>>