Identification of QTLs for resistant starch and total alkaloid content in brown and polished rice

文献类型: 外文期刊

第一作者: Zeng, Y. W.

作者: Zeng, Y. W.;Du, J.;Pu, X. Y.;Yang, S. M.;Yang, X. M.;Yang, T.;Sun, D.;Yang, J. Z.

作者机构:

关键词: Resistant starch;Total alkaloids;Quantitative trait locus;Brown and polished rice

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2016 年 15 卷 3 期

页码:

收录情况: SCI

摘要: An F-3 population consisting of 117 F-2:3 families derived from a cross between two varieties of rice, Gongmi No. 3 and Diantun 502, with a large difference in their resistant starch and total alkaloid content, was used for quantitative trait locus (QTL) mapping. Two QTLs of resistant starch for rice (qRS7-1, qRS7-2) were identified in a linkage group on chromosome 7, which could explain phenotypic variance from 7.6 to 17.3%, due to additive effects for resistant starch from Gongmi No. 3 or over-dominance effects for qRS7-2 of the marker interval (RM3404-RM478) on chromosome 7 from Gongmi No. 3, accounting for 13.8-17.3% of the phenotypic variance. Two QTLs of total alkaloids for brown rice (qALb7-1, qALb7-2) were identified in the same linkage group, which could explain phenotypic variance from 7.7 and 19.3%, respectively, due to dominance or over-dominance effects for total alkaloids on chromosome 7 from Diantun 502. To our knowledge, these are the first QTLs to be identified, which are related to resistant starch and total alkaloid content in rice. These results are beneficial for understanding the genetic basis of, as well as for developing markers linked with, resistant starch and total alkaloids of functional components for marker-assisted selection breeding in rice.

分类号:

  • 相关文献

[1]DNA fingerprint and determination of functional components for rice with diabetes prevention. Zeng, Yawen,Du, Juan,Pu, Xiaoying,Yang, Shuming,Yang, Tao. 2013

[2]Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Hu, PS,Zhao, HJ,Duan, ZY,Zhang, LL,Wu, DX. 2004

[3]The Zonal Characteristics and Cultivated Types Difference of Functional Components in Brown Rice for Core Collection of Yunnan Rice. Zeng Ya-wen,Du Juan,Yang Shu-ming,Pu Xiao-ying,Yang Tao,Zeng Ya-wen,Wang Yu-chen,Sun Zheng-hai,Xin Pei-yao. 2010

[4]Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model. Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an,Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an,Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an,Luo Xi,Wu Fang-xi,Xie Hong-guang,Zhu Yong-sheng,Zhang Jian-fu,Xie Hua-an. 2016

[5]Starch structure and digestibility of rice high in resistant starch. Shu, Xiaoli,Jiao, Guiai,Fitzgerald, Melissa A.,Yang, Chaozhu,Shu, Qingyao,Wu, Dianxing.

[6]In vitro measurement of resistant starch of cooked milled rice and physico-cheMical characteristics affecting its formation. Zhang, Wenwei,Bi, Jingcui,Yan, Xiaoyan,Wang, Hailian,Zhu, Changlan,Wang, Hankang,Wan, Jianmin. 2007

[7]A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. Yang, Ruifang,Bai, Jianjiang,Fang, Jun,Piao, Zhongze,Wang, Ying,Lee, Gangseob.

[8]Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Zheng, Yafeng,Wang, Qi,Li, Baoyu,Lin, Liangmei,Zheng, Baodong,Xiao, Jianbo,Zheng, Yafeng,Li, Baoyu,Lin, Liangmei,Zheng, Baodong,Wang, Qi,Tundis, Rosa,Loizzo, Monica R..

[9]Genome-wide association study of the resistant starch content in rice grains. Bao, Jinsong,Xu, Feifei,He, Qiang,Park, Yong-Jin,Bao, Jinsong,Zhou, Xin,Xu, Feifei,Xu, Feifei,Park, Yong-Jin.

[10]Analysis of resistant starch degradation in postharvest ripening of two banana cultivars: Focus on starch structure and amylases. Gao, Huijun,Huang, Shaobo,Dong, Tao,Yang, Qiaosong,Yi, Ganjun.

[11]Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang,Cheng, Shuai,Soomro, Ayaz Ali,Liu, Zhigang,Gu, Riliang,Mi, Guohua,Yuan, Lixing,Chen, Fanjun,Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang. 2016

[12]Genetic analysis of maize kernel thickness by quantitative trait locus identification. Wen, G. Q.,Liu, X. H.,Liao, C. M.. 2015

[13]Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Zhang, H. M.,Wu, X. P.,Liu, X. H.,Sun, Y.,Li, Z. Q.,Zhang, H. M.,Wu, X. P.,Sun, Y.,Li, Z. Q.. 2014

[14]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[15]QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Zhang, Hongmei,Li, Runzhi,Zheng, Zuping,Li, Zhong,He, Chuan,Liu, Daihui,Luo, Yangchun,Zhang, Guoqin,Liu, Xiaohong,Tan, Zhenbo,Zhang, Hongmei. 2010

[16]Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Dai, Wei-Min,Zhang, Ke-Qin,Wu, Ji-Rong,Wang, Lei,Duan, Bin-Wu,Zheng, Kang-Le,Zhuang, Jie-Yun,Dai, Wei-Min,Cai, Run,Dai, Wei-Min. 2008

[17]Genetic dissection of seminal root architecture in elite durum wheat germplasm. Sanguineti, M. C.,Li, S.,Maccaferri, M.,Corneti, S.,Rotondo, F.,Chiari, T.,Tuberosa, R.. 2007

[18]Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. Qiao, Weihua,Qi, Lan,Cheng, Zhijun,Su, Long,Li, Jing,Sun, Yan,Zheng, Xiaoming,Yang, Qingwen,Qi, Lan,Ren, Junfang. 2016

[19]Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Shao, Gaoneng,Tang, Shaoqing,Luo, Ju,Jiao, Guiai,Wei, Xiangjin,Tang, Ao,Wu, Jianli,Zhuang, Jieyun,Hu, Peisong. 2010

[20]Discovery of quantitative trait loci for crossability from a synthetic wheat genotype. Zhang, Li,Wang, Jin,Zhou, Ronghua,Jia, Jizeng,Zhang, Li,Zhang, Li. 2011

作者其他论文 更多>>