Facilitation by a Spiny Shrub on a Rhizomatous Clonal Herbaceous in Thicketization-Grassland in Northern China: Increased Soil Resources or Shelter from Herbivores

文献类型: 外文期刊

第一作者: Saixiyala

作者: Saixiyala;Yang, Ding;Zhang, Shudong;Liu, Guofang;Yang, Xuejun;Huang, Zhenying;Ye, Xuehua;Saixiyala;Yang, Ding;Zhang, Shudong

作者机构:

关键词: clonal plant;Caragana intermedia;environmental heterogeneity;fertility islands;Leymus chinensis;shelter from herbivores;thicketization of grassland

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: The formation of fertility islands by shrubs increases soil resources heterogeneity in thicketization-grasslands. Clonal plants, especially rhizomatous or stoloniferous clonal plants, can form large clonal networks and use heterogeneously distributed resources effectively. In addition, shrubs, especially spiny shrubs, may also provide herbaceous plants with protection from herbivores, acting as 'shelters'. The interaction between pre-dominated clonal herbaceous plants and encroaching shrubs remains unclear in thicketization-grassland under grazing pressure. We hypothesized that clonal herbaceous plants can be facilitated by encroached shrubs as a 'shelter from herbivores' and/or as an 'increased soil resources' under grazing pressure. To test this hypothesis, a total of 60 quadrats were chosen in a thicket-grassland in northern China that was previously dominated by Leymus chinensis and was encroached upon by the spiny leguminous plant Caragana intermedia. The soil and plant traits beneath and outside the shrub canopies were sampled, investigated and contrasted with an enclosure. The soil organic matter, soil total nitrogen and soil water content were significantly higher in the soil beneath the shrub canopies than in the soil outside the canopies. L. chinensis beneath the shrub canopies had significantly higher plant height, single shoot biomass, leaf length and width than outside the shrub canopies. There were no significantly differences between plant growth in enclosure and outside the shrub canopies. These results suggested that under grazing pressure in a grassland undergoing thicketization, the growth of the rhizomatous clonal herbaceous plant L. chinensis was facilitated by the spiny shrub C. intermedia as a 'shelter from herbivores' more than through 'increased soil resources'. We propose that future studies should focus on the community- and ecosystem-level impacts of plant clonality.

分类号:

  • 相关文献

[1]Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. Wan, Yongqing,Mao, Mingzhu,Yang, Qi,Li, Guojing,Wang, Ruigang,Wan, Dongli,Yang, Feiyun,Mandlaa. 2018

[2]Concurrent Effects of Sediment Accretion and Nutrient Availability on the Clonal Growth Strategy of Carex brevicuspis-A Wetland Sedge That Produces Both Spreading and Clumping Ramets. Xie, Yonghong,Li, Feng,Deng, Zhengmiao,Hou, Zhiyong,Wu, Chao,Chen, Xinsheng,Xie, Yonghong,Li, Feng,Deng, Zhengmiao,Hou, Zhiyong,Wu, Chao,Liao, Yulin. 2017

[3]Investigation on morphology and cultural properties of a vegetative strain "Special Blue"' (SB) of Leymus chinensis for its application in landscaping. Xi, QG,Greef, JM. 2004

[4]Bovine serum albumin in saliva mediates grazing response in Leymus chinensis rleevealed by RNA sequencing. Huang, Xin,Peng, Xianjun,Zhang, Lexin,Chen, Shuangyan,Cheng, Liqin,Liu, Gongshe,Huang, Xin,Peng, Xianjun,Huang, Xin,Zhang, Lexin. 2014

[5]Effects of locations and growth stages on nutritive value and silage fermentation quality of Leymus chinensis in Eurasian steppe of northern China. Xue, Yanlin,Sun, Lin,Yin, Guomei,Zhao, Heping,Ding, Haijun,Bai, Chunsheng,Sun, Juanjuan,Sun, Qizhong,Chang, Shujuan,Yu, Zhu. 2018

[6]Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture. Li Xi-liang,Liu Zhi-ying,Ren Wei-bo,Ding Yong,Ji Lei,Guo Feng-hui,Hou Xiang-yang. 2016

[7]The genetic diversity of perennial Leymus chinensis originating from China. Liu, Z. P.,Li, X. F.,Li, H. J.,Yang, Q. C.,Liu, G. S.. 2007

[8]Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland, China. Li Xiliang,Hou Xiangyang,Ren Weibo,Wu Xinhong,Baoyin, Taogetao,Liu Zhiying,Li Yaqiong,Xu Huimin,Badgery, Warwick. 2016

[9]Management Regimen and Seeding Rate Modify Seedling Establishment of Leymus chinensis. Liu, G. X.,He, F.,Wan, L. Q.,Li, X. L.,Liu, G. X..

[10]Physiological and biochemical characterization of sheepgrass (Leymus chinensis) reveals insights into photosynthetic apparatus coping with low-phosphate stress conditions. Li, Lingyu,Yang, Haomeng,Liu, Bei,Cheng, Dongmei,Peng, Lianwei,Huang, Fang,Li, Lingyu,Liu, Bei,Cheng, Dongmei,Ren, Weibo,Wu, Xinhong,Gong, Jirui.

[11]The effect of nitrogen addition on seed yield and yield components of Leymus chinensis in Songnen Plain, China. Chen, J. S.,Zhu, R. F.,Zhang, Y. X.. 2013

[12]Comparative Analysis of Polysaccharides from Two Ecological Types of Leymus chinensis. Bi Hong-tao,Li Jing-jing,Chen Xi-guang,Yan Ji-hong,Sun Fang,Fan Sha-sha,Cao Gang,Zhou Yi-fa. 2012

[13]Can litter addition mediate plant productivity responses to increased precipitation and nitrogen deposition in a typical steppe?. Shen, Yue,Yang, Xin,Liu, Nan,Chen, Jishan,Zhang, Yingjun,Chen, Wenqing,Yang, Gaowen,Sun, Xiao,Chen, Jishan.

[14]Gibberellin stimulates regrowth after defoliation of sheepgrass (Leymus chinensis) by regulating expression of fructan-related genes. Cai, Yueyue,Liu, Gongshe,Chen, Shuangyan,Shao, Linhui,Li, Xiuqing.

作者其他论文 更多>>