Tomato Leaf Liriomyza Sativae Blanchard Pest Detection Based on Hyperspectral Technology

文献类型: 外文期刊

第一作者: Li Cui-ling

作者: Li Cui-ling;Jiang Kai;Ma Wei;Wang Xiu;Meng Zhi-jun;Zhao Xue-guan;Song Jian;Li Cui-ling;Jiang Kai;Ma Wei;Wang Xiu;Meng Zhi-jun;Zhao Xue-guan;Song Jian

作者机构:

关键词: Hyperspectral technology;Tomato;Pest;SAM;Red edge parameter;DA

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2018 年 38 卷 1 期

页码:

收录情况: SCI

摘要: Tomato yield and farmers' economic benefits will decrease when insect pest occurs in the growth of tomato plants. This study used hyperspectral technology combined with chemometrics methods to realize fast identification of tomato leaf LiriomyzaSativae Blanchard pest. A simple hyperspectral imaging system was developed, including a light source unit, and hyper spectral image acquisition unit and a data processing unit, and hyperspectral images of tomato leaves were collected through this system. Hyperspectral images were calibrated and spectral information was extracted from each image. Spectral angle mapping (SAM) analysis method and spectrum red edge parameters discriminant analysis (DA) method were adopted to identify tomato leaf Liriomyza Sativae Blanchard pest respectively. In the SAM analysis, normalization algorithm was utilized to preprocess hyperspectral data so as to eliminate redundant information in hyperspectral data and increase the differences between samples. Discriminant effects of tomato leaf pest were compared when different reflective spectrums of tomato leaf samples were used as test spectrums. It was found that when regarding the average reflectance spectrum of 100 tomato leaves infected by Liriomyzasativae Blanchard pest as the test spectrum, the overall recognition accuracy was higher, reaching to 96.5%. In spectrum red edge parameters discriminant analysis, 6 kinds of red edge information that red edge position, red edge amplitude, minimum amplitude, red edge area, location of minimum chlorophyll absorption, and the ratio of red edge amplitude to minimum amplitude were extracted from tomato leaves' spectral data. Discriminant analysis method was used to develop discriminant model of tomato leaf LiriomyzaSativae Blanchard pest, discriminant effects of distance discriminant analysis, Fisher discriminant analysis, and Bayes discriminant analysis were compared. Comparison results indicated that Fisher discriminant analysis generated the best discriminant effect. The discriminant accuracy was 96. 0% for validation set, while distance discriminant analysis produced the worst discriminant effect, with 88. 0% discriminant accuracy. Research results showed that using hyperspectral technology to identify Liriomyza sativae Blanchard pest was feasible.

分类号:

  • 相关文献

[1]The current situation and trend of tomato cultivation in China. Xu, ZH,Shou, WL,Huang, KM,Zhou, SJ,Li, GJ,Tang, GC,Xiu, XC,Xu, GL,Jin, BS.

[2]Using hyperspectral imaging technology to identify diseased tomato leaves. Li, Cuiling,Wang, Xiu,Zhao, Xueguan,Meng, Zhijun,Zou, Wei,Li, Cuiling,Wang, Xiu,Zhao, Xueguan,Meng, Zhijun,Zou, Wei. 2016

[3]MELON SEED VARIETY IDENTIFICATION BASED ON HYPERSPECTRAL TECHNOLOGY COMBINED WITH DISCRIMINANT ANALYSIS. Li, Cuiling,Fan, Pengfei,Jiang, Kai,Wang, Xiu,Feng, Qingchun,Zhang, Chunfeng,Li, Cuiling,Fan, Pengfei,Jiang, Kai,Wang, Xiu,Feng, Qingchun,Zhang, Chunfeng. 2017

[4]Is Time Series Smoothing Function Necessary for Crop Mapping? - Evidence from Spectral Angle Mapper After Empirical Analysis. Chen, Ailian,Zhao, Hu,Pei, Zhiyuan. 2016

[5]Molecular cloning and expression analysis of the CKS1B gene from black tiger shrimps (Penaeus monodon). Shi, Gongfang,Zhao, Chao,Fu, Mingjun,Qiu, Lihua,Shi, Gongfang,Zhao, Chao,Fu, Mingjun,Qiu, Lihua.

[6]Pest control and resistance management through release of insects carrying a male-selecting transgene. Harvey-Samuel, Tim,Alphey, Nina,Alphey, Luke,Harvey-Samuel, Tim,Morrison, Neil I.,Walker, Adam S.,Marubbi, Thea,Gorman, Kevin,Warner, Simon,Alphey, Luke,Yao, Ju,Collins, Hilda L.,Shelton, Anthony M.,Yao, Ju,Davies, T. G. Emyr,Alphey, Nina,Alphey, Luke. 2015

[7]Bioinformatic analysis of gene encoding odorant binding protein (OBP) 1, OBP2, and chemosensory proteins in Grapholita molesta. Zhao, Zhiguo,Liu, Baoling,Rong, Erhua,Zhang, Lijun,Guo, Yanqiong,Ma, Ruiyan,Li, Jie,Kong, Weina.

[8]Managing Meloidogyne incognita with calcium phosphide as an alternative to methyl bromide in tomato crops. Qiao, Kang,Xia, Xiaoming,Wang, Kaiyun,Zhang, Huan,Duan, Haiming,Wang, Hongyan,Wang, Dong. 2013

[9]Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Yang, Xiaohui,Guo, Yanmei,Wang, Xiaoxuan,Du, Yongchen,Yang, Xiaohui,Yang, Xiaohui,Hutton, Samuel F.,Scott, John W.,Caro, Myluska,Rashid, Md Harunur,Visser, Richard G. F.,Bai, Yuling,Szinay, Dora,de Jong, Hans. 2014

[10]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[11]Young but not relatively old retrotransposons are preferentially located in gene-rich euchromatic regions in tomato (Solanum lycopersicum) plants. Yingxiu Xu,Jianchang Du.

[12]Effect of abamectin on root-knot nematodes and tomato yield. Qiao, Kang,Liu, Xia,Xia, Xiaoming,Wang, Kaiyun,Wang, Hongyan,Ji, Xiaoxue.

[13]Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Zhang, Song,Wang, Guo-Dong,Kong, Fan-Ying,Meng, Chen,Deng, Yong-Sheng.

[14]Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Wang, T.,Wang, T.,Zou, Q. D.,Qi, S. Y.,Wang, X. F.,Wu, Y. Y.,Zhang, Y. M.,Zhang, Z. J.,Li, H. T.,Liu, N.. 2016

[15]An Improved Simulation Model for Tomato Plant Based on Physiological Development Time. Wang, Jian,Cui, Lingguo,Zhang, Baihai,He, Chaoxing. 2014

[16]Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum. Li, Zhenjun,Peng, Rihe,Tian, Yongsheng,Han, Hongjuan,Xu, Jing,Yao, Quanhong.

[17]Fine mapping and molecular marker development of anthocyanin absent, a seedling morphological marker for the selection of male sterile 10 in tomato. Zhang, Liyuan,Huang, Zejun,Wang, Xiaoxuan,Gao, Jianchang,Guo, Yanmei,Du, Yongchen,Hu, Hong.

[18]Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. Huang, Jianfeng,Yang, Tianjie,Jousset, Alexandre,Xu, Yangchun,Shen, Qirong,Huang, Jianfeng,Yang, Tianjie,Jousset, Alexandre,Friman, Ville-Petri.

[19]Association of different endosymbionts with the whitefly species Bemisia tabaci and Trialeurodes vaporariorum (Sternorrhyncha : Aleyrodidae). Tan, ZJ,Xie, BY,Xiao, QM,Yang, YH,Wan, FH,Huang, SW.

[20]Functional response of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) to Bemisia tabaci (Gennadius) on tomato leaves. Fu, Junfan,Li, Maohai,Li, Jianping,Yang, Nianwan,Wan, Fanghao,Liu, Liling,Chen, Yan.

作者其他论文 更多>>