Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform

文献类型: 外文期刊

第一作者: Li, Fang

作者: Li, Fang;Lu, Anxiang;Wang, Jihua;Li, Fang;Lu, Anxiang;Wang, Jihua;Lu, Anxiang;Wang, Jihua

作者机构:

关键词: X-ray fluorescence;heavy metal;soil;wavelet transform

期刊名称:INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH ( 影响因子:3.39; 五年影响因子:3.789 )

ISSN: 1660-4601

年卷期: 2017 年 14 卷 10 期

页码:

收录情况: SCI

摘要: A modeling method based on discrete wavelet transform (DWT) was introduced to analyze the concentration of chromium, copper, zinc, arsenic and lead in soil with a portable X-ray fluorescence (XRF) spectrometer. A total of 111 soil samples were collected and observed. Denoising and baseline correction were performed on each spectrum before modeling. The optimum conditions for pre-processing were denoising with Coiflet 3 on the 3rd level and baseline correction with Coiflet 3 on the 9th level. Calibration curves were established for the five heavy metals (HMs). The detection limits were compared before and after the application of DWT, the qualitative detection limits and the quantitative detection limits were calculated to be three and ten times as high as the standard deviation with silicon dioxide (blank), respectively. The results showed that the detection limits of the instrument using DWT were lower, and that they were below national soil standards; the determination coefficients (R-2) based on DWT-processed spectra were higher, and ranged from 0.990 to 0.996, indicating a high degree of linearity between the contents of the HMs in soil and the XRF spectral characteristic peak intensity with the instrument measurement.

分类号:

  • 相关文献

[1]Determination of Cr, Cu, Zn, Pb and As in Soil by Field Portable X-Ray Fluorescence Spectrometry. Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Han Ying. 2010

[2]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[3]Spatial Variations of Heavy Metals in the Soils of Vegetable-Growing Land along Urban-Rural Gradient of Nanjing, China. Pan, Jian-Jun,Fang, Shi-Bo,Hu, Hao,Sun, Wan-Chun. 2011

[4]Effects of Land Use on Heavy Metal Accumulation in Soils and Sources Analysis. Bai Ling-yu,Zeng Xi-bai,Li Lian-fang,Li Shu-hui,Pen Chang. 2010

[5]Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Ye, Xuezhu,Xiao, Wendan,Zhang, Yongzhi,Zhao, Shouping,Wang, Gangjun,Zhang, Qi,Wang, Qiang.

[6]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[7]Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain. Zhou, Yin,Ma, Zhiqiang,Shi, Zhou,Biswas, Asim,Lu, Yanli,Chen, Qiuxiao.

[8]Influence of a heavy rainfall event on the leaching of [C-14]isoproturon and its degradation products in outdoor lysimeters. Doerfler, Ulrike,Cao, Guoyin,Grundmann, Sabine,Schroll, Reiner.

[9]Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Zhang, Shujie,Chao, Ying,Zhang, Chunlei,Cheng, Jing,Li, Jun,Ma, Ni.

[10]N, P Contribution and soil adaptability of four arbuscular mycorrhizal fungi. Wenke, Liu.

[11]Protective function of narrow grass hedges on soil and water loss on sloping croplands in Northern China. Xiao, Bo,Wang, Qing-hai,Wu, Ju-ying,Huang, Chuan-wei,Yu, Ding-fang,Xiao, Bo.

[12]Effects of Zinc and Chromium Stresses on Heavy Metal Accumulation of Rice Roots at Different Growth Stages of Rice Plants. Zhu, Xuemei,Zhang, Qingsong,Ma, Xiang,Ye, Linchun,Lin, Lijin,Liu, Qihua,Shao, Jirong. 2010

[13]Study on the Effect of Carboxyl Bagasse Hemicellulose on Heavy Metal Adsorption. Liu, Xinliang,Zhu, Hongxiang,Li, Zhoujun,Lu, Yiguan,Wu, Fusheng,Wang, Shuangfei,Weng, Mengling. 2012

[14]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[15]Mercury in Sclerotia of Wolfiporia Extensa (Peck) Ginns Fungus Collected Across of the Yunnan Land. Wiejak, Anna,Falandysz, Jerzy,Wang Yuan-zhong,Zhang Ji. 2016

[16]Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?. Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang,Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang. 2016

[17]Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). Lu, Xin,Gao, Yan,Luo, Jia,Yan, Shaohua,Zhang, Zhenhua,Lu, Xin,Gao, Yan,Luo, Jia,Yan, Shaohua,Zhang, Zhenhua,Rengel, Zed,Zhang, Zhenhua. 2014

[18]DISTRIBUTION OF HEAVY METALS IN SURFACE SEDIMENTS FROM THE PEARL RIVER OUTLETS, SOUTH CHINA: FIVE-YEAR MONITORING PROGRAM. Zeng, Yanyi,Lai, Zini,Yang, Wanling,Li, Haiyan. 2018

[19]SPECIATION AND ASSESSMENT OF HEAVY METAL IN SEDIMENTS FROM A TYPICAL MARICULTURE BASE IN GUANGDONG COAST, CHINA. Gu, Yangguang,Lin, Qin,Wang, Zenghuan,Wang, Xunuo,Gu, Yangguang,Yang, Yufeng,Jiang, Shijun. 2011

[20]Comparison of the water quality of the surface microlayer and subsurface water in the Guangzhou segment of the Pearl River, China. Liu Qing,Hu Xiaojuan,Jiang Jiangluan,Zhang Junyi,Yang Yufeng,Liu Qing,Hu Xiaojuan,Wu Zhihui. 2014

作者其他论文 更多>>