Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm

文献类型: 外文期刊

第一作者: Ma, Xiaoling

作者: Ma, Xiaoling;Sajjad, Muhammad;Wang, Jing;Yang, Wenlong;Sun, Jiazhu;Li, Xin;Zhang, Aimin;Liu, Dongcheng;Ma, Xiaoling;Sajjad, Muhammad;Wang, Jing

作者机构:

关键词: Common wheat;Kernel hardness;Puroindoline genes;EcoTILLING;Allelic variants

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2017 年 17 卷

页码:

收录情况: SCI

摘要: Background: Kernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb. Using EcoTILLING platform, we herein investigated the allelic variations of Pina and Pinb genes and their association with the Single Kernel Characterization System (SKCS) hardness index in a diverse panel of wheat germplasm. Results: The kernel hardness varied from 1.4 to 102.7, displaying a wide range of hardness index. In total, six Pina and nine Pinb alleles resulting in 15 genotypes were detected in 1787 accessions. The most common alleles are the wild type Pina-D1a (90.4%) and Pina-D1b (7.4%) for Pina, and Pinb-D1b (43.6%), Pinb-D1a (41.1%) and Pinb-D1p (12. 8%) for Pinb. All the genotypes have hard type kernel hardness of SKCS index (> 60.0), except the wild types of Pina and Pinb combination (Pina-D1a/Pinb-D1a). The most frequent genotypes in Chinese and foreign cultivars was PinaD1a/Pinb-D1b (46.3 and 39.0%, respectively) and in Chinese landraces was Pina-D1a/Pinb-D1a (54.2%). The frequencies of hard type accessions are increasing from 35.5% in the region IV, to 40.6 and 61.4% in the regions III and II, and then to 77.0% in the region I, while those of soft type are accordingly decreasing along with the increase of latitude. Varieties released after 2000 in Beijing, Hebei, Shandong and Henan have higher average kernel hardness index than that released before 2000. Conclusion: The kernel hardness in a diverse panel of Chinese wheat germplasm revealed an increasing of kernel hardness generally along with the latitude across China. The wild type Pina-D1a and Pinb-D1a, and one Pinb mutant (Pinb-D1b) are the most common alleles of six Pina and nine Pinb alleles, and a new double null genotype (Pina-D1x/ Pinb-D1ah) possessed relatively high SKCS hardness index. More hard type varieties were released in recent years with different prevalence of Pin-D1 combinations in different regions. This work would benefit the understanding of the selection and molecular processes of kernel hardness across China and different breeding stages, and provide useful information for the improvement of wheat quality in China.

分类号:

  • 相关文献

[1]Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Chang, Cheng,Zhang, Haiping,Xu, Jie,Li, Weihua,Liu, Guangtian,You, Mingshan,Li, Baoyun. 2006

[2]Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. Jin, Ji-Qiang,Ma, Jian-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang.

[3]Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Chen, F,He, ZH,Xia, XC,Xia, LQ,Zhang, XY,Lillemo, M,Morris, CF. 2006

[4]Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING. Li, Wenjie,Zhao, Baocun,Li, Wenjie,Guo, Huijun,Xie, Yongdun,Zhao, Linshu,Gu, Jiayu,Zhao, Shirong,Liu, Luxiang,Wang, Yongbin,Wang, Guangjin.

[5]Genotypic Variation in Wheat Flour Lysophospholipids. Liu, Lei,Guo, Qi,Waters, Daniel L. E.,Raymond, Carolyn A.,King, Graham J.,Guo, Qi,He, Zhonghu,Xia, Xianchun,He, Zhonghu.

[6]Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum aestivum ssp. yunnanense King). Chen, Feng,Yu, Yaxiong,Xia, Xianchun,He, Zhonghu. 2007

[7]Segregation analysis indicates that Puroindoline b-2 variants 2 and 3 are allelic in Triticum aestivum and that a revision to Puroindoline b-2 gene symbolization is indicated. Geng, Hongwei,Geng, Hongwei,Beecher, Brian S.,Morris, Craig F.,Pumphrey, Michael,He, Zhonghu,He, Zhonghu. 2013

[8]Molecular characterization of the Puroindoline a-D1b allele and development of an STS marker in wheat (Triticum aestivum L.). Chen, Feng,Zhang, Fuyan,Cui, Dangqun,Morris, Craig,He, Zhonghu,Xia, Xianchun,He, Zhonghu. 2010

[9]Physical mapping of puroindoline b-2 genes and molecular characterization of a novel variant in durum wheat (Triticum turgidum L.). Chen, F.,Xu, H. -X.,Zhang, F. -Y.,Dong, Z. -D.,Zhan, K. -H.,Cheng, X. -Y.,Cui, D. -Q.,Xia, X. -C.,He, Z. -H.,He, Z. -H.,Wang, D. -W.. 2011

[10]Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Chen, F.,Zhang, F-Y.,Dong, Z-D.,Cui, D-Q.,Xia, X-C.. 2012

[11]A new puroindoline b mutation present in Chinese winter wheat cultivar Jingdong 11. Chen, F,He, ZH,Xia, XC,Lillemo, M,Morris, C. 2005

[12]Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Caixia Lan,Xiaowen Ni,Jun Yan,Yong Zhang,Xianchun Xia,Xinmin Chen,Zhonghu He.

[13]Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA. Hu, Ming-Jian,Zhang, Hai-Ping,Liu, Kai,Cao, Jia-Jia,Wang, Sheng-Xing,Jiang, Hao,Wu, Zeng-Yun,Lu, Jie,Zhu, Xiao F.,Xia, Xian-Chun,Sun, Gen-Lou,Ma, Chuan-Xi,Chang, Cheng,Xia, Xian-Chun,Sun, Gen-Lou. 2016

[14]Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. Li, Xueyin,Gao, Shiqing,Tang, Yimiao,Zhang, Fengjie,Feng, Biane,Fang, Zhaofeng,Zhao, Changping,Li, Xueyin,Ma, Lingjian,Li, Lei,Zhang, Fengjie,Feng, Biane. 2015

[15]Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1 a in wheat. Guo, Ying,Sun, Jinjie,Zhang, Guizhi,Wang, Yingying,Kong, Fanmei,Zhao, Yan,Li, Sishen,Guo, Ying,Wang, Yingying. 2013

[16]Mineral element distributions in milling fractions of Chinese wheats. Tang, Jianwei,He, Zhonghu,Zhang, Yong,Tang, Jianwei,Qu, Yanying,Zou, Chunqin,Shi, Rongli,He, Zhonghu,Ortiz-Monasterio, Ivan. 2008

[17]Characterization of genome and chromosomes in octoploid wheat-wheatgrass amphiploid Zhong 2 using fluorescence in situ hybridization and chromosome pairing analysis. Gao, Z,Han, FP,He, MY,Ma, YZ,Xin, ZY. 1999

[18]Molecular mapping of leaf rust resistance gene LrBi16 in Chinese wheat cultivar Bimai 16. Zhang, Hai,Li, Xing,Li, Zaifeng,Liu, Daqun,Xia, Xianchun,He, Zhonghu,He, Zhonghu. 2011

[19]Cytological and molecular analysis of wheat - Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Song, Liqiang,Lu, Yuqing,Zhang, Jinpeng,Pan, Cuili,Yang, Xinming,Li, Xiuquan,Liu, Weihua,Li, Lihui.

[20]The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Lillemo, M.,Asalf, B.,Bjornstad, A.,Singh, R. P.,Huerta-Espino, J.,Chen, X. M.,He, Z. H..

作者其他论文 更多>>