Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
文献类型: 外文期刊
第一作者: Yue, Jibo
作者: Yue, Jibo;Yang, Guijun;Li, Zhenhai;Wang, Yanjie;Feng, Haikuan;Xu, Bo;Yue, Jibo;Yue, Jibo;Li, Changchun;Wang, Yanjie;Yang, Guijun;Li, Zhenhai;Wang, Yanjie;Feng, Haikuan;Xu, Bo;Yang, Guijun;Li, Zhenhai;Xu, Bo
作者机构:
关键词: unmanned aerial vehicle platforms;winter wheat biomass;hyperspectral image;crop height;partial least squares regression
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2017 年 9 卷 7 期
页码:
收录情况: SCI
摘要: Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Wurttemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R-2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R-670 only: R-2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R-2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R-2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R-2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R-2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management.
分类号:
- 相关文献
作者其他论文 更多>>
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance
作者:Wen, Tiantian;Fu, Yuanyuan;Yue, Jibo;Guo, Wei;Liu, Juan;Li, Yuheng
关键词:Agroathelia rolfsii Sacc; canopy hyperspectral reflectance; spectral index
-
Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture
作者:Charagh, Sidra;Hui, Suozhen;Wang, Jingxin;Zhou, Liang;Xu, Bo;Zhang, Yuanyuan;Sheng, Zhonghua;Tang, Shaoqing;Hu, Shikai;Hu, Peisong;Raza, Ali
关键词:
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model