Dissection of additive, dominant, epistatic roles of allelic variation within heat shock factor genes in Chinese indigenous poplar (Populus simonii)

文献类型: 外文期刊

第一作者: Du, Qingzhang

作者: Du, Qingzhang;Wei, Zunzheng;Zhao, Xing;Yang, Xiaohui;Ci, Dong;Zhang, Deqiang;Du, Qingzhang;Zhao, Xing;Yang, Xiaohui;Ci, Dong;Zhang, Deqiang;Wei, Zunzheng

作者机构:

关键词: Abiotic stress;Association genetics;Transcription profiles;Epistasis;Morphological and physiological traits;Populus simonii

期刊名称:TREE GENETICS & GENOMES ( 影响因子:2.297; 五年影响因子:2.547 )

ISSN: 1614-2942

年卷期: 2016 年 12 卷 5 期

页码:

收录情况: SCI

摘要: Heat shock transcription factors (Hsfs) play a crucial role in plant growth and development, but the significance of Hsfs is not clearly understood in long-lived perennial plants. Here, two class A Hsf members (PsHsfA1c1 and PsHsfA7a1) were identified in Populus simonii, an important and pioneering species in northern China, using bioinformatics analysis and molecular cloning. Tissue-specific expression profiling showed that both Hsfs contained high transcript abundance in mature leaf, mature xylem, and root; also, their expression patterns varied in response to multiple abiotic stresses, such as temperature, drought, salt, hormone, and sugar, suggesting that Hsfs are essential in plant responses to diverse abiotic stresses. Based on nucleotide diversity (pi(T) = 0.00772, theta(w) = 0.01519 and pi(T) = 0.00392, theta(w) = 0.00899) and linkage disequilibrium tests (LD, r(2) >= 0.1, within 1200 and 700 bp, respectively) within PsHsfA1c1 and PsHsfA7a1 in a P. simonii association population (607 unrelated individuals), we identified 45, 49, and 26 associations consistent with additive, dominant, and epistatic effects, conferred by multiple variants within both genes across 12 morphological and physiological traits. In which, three significant SNPs (PsHsfA1c1_2273, PsHsfA7a1_308, and PsHsfA7a1_2595) exhibited significant differences of transcript abundance among their genotypic classes in the association population. The results observed here will be useful to understand their potential roles in tree growth, development, and response to environmental stresses.

分类号:

  • 相关文献

[1]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[2]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[3]Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. Sheng, Zheya,Hu, Xiaoxiang,Li, Ning,Sheng, Zheya,Pettersson, Mats E.,Shen, Xia,Carlborg, Orjan,Luo, Chenglong,Qu, Hao,Shu, Dingming. 2013

[4]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[5]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[6]Identification of genome-wide SNP-SNP interactions associated with important traits in chicken. Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Kramer, Luke M.,Reecy, James M.. 2017

[7]Mapping QTL with Main Effect, Digenic Epistatic and QTL x Environment Interactions of Panicle Related Traits in Rice (Oryza sativa). Leng, Yujia,Huang, Lichao,Chen, Long,Ren, Deyong,Yang, Yaolong,Zhang, Guangheng,Hu, Jiang,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali,Leng, Yujia,Lin, Yongjun,Leng, Yujia,Lin, Yongjun,Xue, Dawei. 2017

[8]The Statistical Power of Inclusive Composite Interval Mapping in Detecting Digenic Epistasis Showing Common F2 Segregation Ratios. Wang, Jiankang. 2012

[9]Quantitative Trait Loci Mapping for Chlorophyll Fluorescence and Associated Traits in Wheat (Triticum aestivum). Yang, De-Long,Jing, Rui-Lian,Chang, Xiao-Ping,Li, We.

[10]Bayesian Analysis for Genetic Architectures of Body Weights and Morphological Traits Using Distorted Markers in Japanese Flounder Paralichthys olivaceus. Cui, Yan,Wang, Hongwei,Liu, Haijin,Yang, Runqing,Cui, Yan,Qiu, Xuemei.

[11]QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. Xu, Pei,Wu, Xiaohua,Wang, Baogen,Hu, Tingting,Lu, Zhongfu,Liu, Yonghua,Qin, Dehui,Wang, Sha,Li, Guojing. 2013

[12]Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.. Wang, Furong,Xu, Zhenzhen,Sun, Ran,Gong, Yongchao,Liu, Guodong,Zhang, Jingxia,Wang, Liuming,Zhang, Chuanyun,Zhang, Jun,Wang, Furong,Xu, Zhenzhen,Sun, Ran,Fan, Shoujin,Zhang, Jun.

[13]Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Mei, HW,Luo, LJ,Ying, CS,Wang, YP,Yu, XQ,Guo, LB,Paterson, AH,Li, ZK. 2003

[14]Identification of QTLs associated with physiological nitrogen use efficiency in rice. Cho, Young-Il,Jiang, Wenzhu,Chin, Joong-Hyoun,Piao, Zhongze,Cho, Yong-Gu,McCouch, Susan R.,Koh, Hee-Jong. 2007

[15]Statistical method for mapping QTLs for complex traits based on two backcross populations. Zhu ZhiHong,Yang Jian,Xu HaiMing,Hayart, Yousaf,Cao LiYong,Lou XiangYang. 2012

[16]Advanced Backcross QTL Analysis for the Whole Plant Growth Duration Salt Tolerance in Rice (Oryza sativa L.). Chai Lu,Zhang Jian,Zhang Fan,Zheng Tian-qing,Zhao Xiu-qing,Wang Wen-sheng,Xu Jian-long,Li Zhi-kang,Pan Xiao-biao,Jauhar, Ali. 2014

[17]Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.). Zhang, Fan,Gao, Yong-Ming,Li, Zhi-Kang,Ma, Xiu-Fang,Hao, Xian-Bin. 2014

[18]QTL x environment interactions in rice. I. Heading date and plant height. Li, ZK,Yu, SB,Lafitte, HR,Huang, N,Courtois, B,Hittalmani, S,Vijayakumar, CHM,Liu, GF,Wang, GC,Shashidhar, HE,Zhuang, JY,Zheng, KL,Singh, VP,Sidhu, JS,Srivantaneeyakul, S,Khush, GS. 2003

[19]Influence of epistatic segregation distortion loci on genetic marker linkages in Japanese flounder. Zhao, Jingli,Gao, Jin,Yang, Runqing,Han, Dandan,Shi, Kuntao,Wang, Li. 2018

[20]Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang, Lianguang,Cai, Shihu,Wang, Xiaocui,Li, Yuhua,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei. 2016

作者其他论文 更多>>