A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.)

文献类型: 外文期刊

第一作者: Zhang, Guoyu

作者: Zhang, Guoyu;Ren, Yi;Sun, Honghe;Guo, Shaogui;Zhang, Fan;Zhang, Jie;Zhang, Haiying;Jia, Zhangcai;Xu, Yong;Li, Haizhen;Sun, Honghe;Fei, Zhangjun;Fei, Zhangjun

作者机构:

关键词: High-density genetic map;Pumpkin (Cucurbita maxima Duch.);Scaffold anchoring;QTL mapping;Dwarf vine

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2015 年 16 卷

页码:

收录情况: SCI

摘要: Background: Pumpkin (Cucurbita maxima Duch.) is an economically important crop belonging to the Cucurbitaceae family. However, very few genomic and genetic resources are available for this species. As part of our ongoing efforts to sequence the pumpkin genome, high-density genetic map is essential for anchoring and orienting the assembled scaffolds. In addition, a saturated genetic map can facilitate quantitative trait locus (QTL) mapping. Results: A set of 186 F-2 plants derived from the cross of pumpkin inbred lines Rimu and SQ026 were genotyped using the genotyping-by-sequencing approach. Using the SNPs we identified, a high-density genetic map containing 458 bin-markers was constructed, spanning a total genetic distance of 2,566.8 cM across the 20 linkage groups of C. maxima with a mean marker density of 5.60 cM. Using this map we were able to anchor 58 assembled scaffolds that covered about 194.5 Mb (71.7 %) of the 271.4 Mb assembled pumpkin genome, of which 44 (183.0 Mb; 67.4 %) were oriented. Furthermore, the high-density genetic map was used to identify genomic regions highly associated with an important agronomic trait, dwarf vine. Three QTLs on linkage groups (LGs) 1, 3 and 4, respectively, were recovered. One QTL, qCmB2, which was located in an interval of 0.42 Mb on LG 3, explained 21.4 % phenotypic variations. Within qCmB2, one gene, Cma_004516, encoding the gibberellin (GA) 20-oxidase in the GA biosynthesis pathway, had a 1249-bp deletion in its promoter in bush type lines, and its expression level was significantly increased during the vine growth and higher in vine type lines than bush type lines, supporting Cma_004516 as a possible candidate gene controlling vine growth in pumpkin. Conclusions: A high-density pumpkin genetic map was constructed, which was used to successfully anchor and orient the assembled genome scaffolds, and to identify QTLs highly associated with pumpkin vine length. The map provided a valuable resource for gene cloning and marker assisted breeding in pumpkin and other related species. The identified vine length QTLs would help to dissect the underlying molecular basis regulating pumpkin vine growth.

分类号:

  • 相关文献

[1]High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. Xiaoyun Jia,Chaoyou Pang,Hengling Wei,Hantao Wang,Qifeng Ma,Jilong Yang,Shuaishuai Cheng,Junji Su,Shuli Fan,Meizhen Song,Nusireti Wusiman,Shuxun Yu. 2016

[2]Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Luo, Chun,Shu, Bo,Yao, Quangsheng,Wu, Hongxia,Xu, Wentian,Wang, Songbiao. 2016

[3]Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. Li, Bin,Tian, Ling,Zhang, Jingying,Han, Fenxia,Yan, Shurong,Wang, Lianzheng,Sun, Junming,Huang, Long,Zheng, Hongkun. 2014

[4]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[5]High-Density Linkage Map Construction and Mapping of Salt-Tolerant QTLs at Seedling Stage in Upland Cotton Using Genotyping by Sequencing (GBS). Latyr Diouf,Du, Xiongming,Zhaoe Pan,Shou-Pu He,Wen-Fang Gong,Yin Hua Jia,Richard Odongo Magwanga,Kimbembe Romesh Eric Romy,Harun or Rashid,Joy Nyangasi Kirungu,Xiongming Du. 2017

[6]Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Shang, Lianguang,Abduweli, Abdugheni,Cai, Shihu,Liu, Fang,Wang, Kunbo,Wang, Yumei.

[7]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[8]A Dominant Locus, qBSC-1, Controls beta Subunit Content of Seed Storage Protein in Soybean (Glycine max (L.) Merri.). Wang Jun,Liu Lin,Guo Yong,Wang Yong-hui,Zhang Le,Jin Long-guo,Guan Rong-xia,Liu Zhang-xiong,Wang Lin-lin,Chang Ru-zhen,Qiu Li-juan. 2014

[9]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[10]Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd. Wu, Haibin,He, Xiaoli,Gong, Hao,Luo, Shaobo,Li, Mingzhu,Chen, Junqiu,Zhang, Changyuan,Huang, Wangping,Luo, Jianning,Wu, Haibin,Luo, Shaobo,Yu, Ting. 2016

[11]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[12]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[13]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[14]Fine Mapping of qTGW3-1, a QTL for 1 000-Grain Weight on Chromosome 3 in Rice. Zhang Qiang,Yao Guo-xin,Hu Guang-long,Chen Chao,Tang Bo,Zhang Hong-liang,Li Zi-chao,Zhang Qiang,Yao Guo-xin. 2012

[15]An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye, Jiang,Yang, Yuhua,Shi, Jiaqin,Zhan, Jiepeng,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Chen, Bo,Luo, Meizhong. 2017

[16]Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments. Chen Dan,Wu Xiao-yan,Zhang Jin-pen,Liu Wei-hu,Yang Xin-ming,Li Xiu-quan,Lu Yu-qing,Li Li-hui,Chen Dan,Wu Ku. 2017

[17]A novel functional gene associated with cold tolerance at the seedling stage in rice. Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin,Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin. 2017

[18]Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Ning Zhiyuan,Mei, Hongxian,Zhang, Tianzhen,Chen, Hong. 2014

[19]Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon. Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Wang, Xicheng,Yu, Xiaoqing,Zhao, Xiongwei,Luo, Na,Garvin, David F.,Garvin, David F.. 2017

[20]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

作者其他论文 更多>>