Geographical classification of apple based on hyperspectral imaging

文献类型: 外文期刊

第一作者: Guo, Zhiming

作者: Guo, Zhiming;Huang, Wenqian;Chen, Liping;Zhao, Chunjiang

作者机构:

关键词: hyperspectral imaging;geographical origin;apple;feature extraction;support vector machine

期刊名称:SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY V

ISSN: 0277-786X

年卷期: 2013 年 8721 卷

页码:

收录情况: SCI

摘要: Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.

分类号:

  • 相关文献

[1]Feature Extraction and Classification of Animal Blood Spectra with Support Vector Machine. Lu Peng-fei,Fan Ya,Zhou Lin-hua,Gao Bin,Qian Jun,Liu Lin-na,Zhao Si-yan,Kong Zhi-feng. 2017

[2]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[3]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[4]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[5]Development of a multispectral imaging system for online detection of bruises on apples. Huang, Wenqian,Li, Jiangbo,Wang, Qingyan,Chen, Liping.

[6]Design of structured-light vision system for tomato harvesting robot. Feng Qingchun,Zhou Jianjun,Wang Xiu,Cheng Wei. 2014

[7]The Actualities and Prospects of Ultrasound-based Pattern Recognition in Crop Feature Extraction. Yu, Shanshan,Wu, Chongyou,Wang, Suzhen,Hu, Minjuan. 2011

[8]STUDY ON CROP IMAGE FEATURE EXTRACTION OF VEHICLE-BASED ESTIMATION SYSTEM ON LARGE SCALE CROP ACREAGE. Wang, Su-Xia,Song, Zheng-He,Zhu, Zhong-Xiang,Mao, En-Rong,Yang, Bang-Jie,Zhang, Rui. 2007

[9]Deep-Learning-Based Drug-Target Interaction Prediction. Wen, Ming,Zhang, Zhimin,Niu, Shaoyu,Sha, Haozhi,Yang, Ruihan,Lu, Hongmei,Yun, Yonghuan.

[10]Dynamic monitoring and driving power analysis of LUCC based on remote sensing in Beijing in recent thirty years. Gu, Xiaohe,Guo, Wei,Dong, Yansheng,Wang, Yanchang. 2013

[11]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[12]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[13]Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions. Wen, Xiaohu,Si, Jianhua,He, Zhibin,Yu, Haijiao,Wu, Jun,Shao, Hongbo,Shao, Hongbo. 2015

[14]A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth. Qiu, Quan,Qiao, Xiaojun,Zheng, Chenfei,Wang, Wenping,Yu, Jingquan,Shi, Kai,Bai, He. 2017

[15]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[16]Geographic Characterization of Leccinum rugosiceps by Ultraviolet and Infrared Spectral Fusion. Yao, Sen,Liu, Hong-Gao,Li, Jie-Qing,Yao, Sen,Wang, Yuan-Zhong,Li, Tao,Wang, Yuan-Zhong. 2017

[17]Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm. Zou, Weidong,Yao, Fenxi,Zhang, Baihai,Guan, Zixiao,He, Chaoxing.

[18]Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Hasituya,Chen, Zhongxin,Wang, Limin,Wu, Wenbin,Li, He,Jiang, Zhiwei. 2016

[19]DIAGNOSTIC MODEL FOR WHEAT LEAF CONDITIONS USING IMAGE FEATURES AND A SUPPORT VECTOR MACHINE. Du, K.,Sun, Z.,Li, Y.,Zheng, F.,Chu, J.,Su, Y.. 2016

[20]Application of support vector machine for detecting rice diseases using shape and color texture features. Yao, Qing,Guan, Zexin,Zhou, Yingfeng,Tang, Jian,Hu, Yang,Yang, Baojun. 2009

作者其他论文 更多>>