Spatial-Temporal Analysis of Field Evapotranspiration Based on Complementary Relationship Model and IKONOS Data

文献类型: 外文期刊

第一作者: Yang Guijun

作者: Yang Guijun;Zhao Chunjiang;Xu Qingyun

作者机构:

关键词: complementary relationship model;IKONOS;evapotranspiration;lysimeter

期刊名称:2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)

ISSN: 2153-6996

年卷期: 2013 年

页码:

收录情况: SCI

摘要: Mapping high spatial-temporal resolution evapotranspiration (ET) over large areas is important for water resources planning, precision irrigation and monitoring water use efficiency. However, both the traditional field measurement and aerodynamic estimation mainly focus on obtaining local ET. Remote sensing data often can be used to retrieve large area instantaneous ET at low spatial resolution over region or global scale. Therefore, using traditional measurements and high resolution image data to generate high spatial-temporal resolution ET is becoming an important research direction. In this paper, the complementary relationship model (CR) was employed together with meteorological data to estimate actual ET, and the results were validated by lysimeter observation. Furthermore, CR model was combined with high resolution image, IKONOS data, to estimate instantaneous field scale ET and they also were transferred into daily ET. The cumulative evapotranspiration (ET) of winter wheat during the reproductive phase from March to June of 2011 was 469.12 mm, essentially corresponding to the annual precipitation in the Beijing area. The most high accuracy of estimated ET by CR model is also on May(R-2=0.863, RMSE=0.103 mm). The transferred daily ET by self-preservation of evaporative fraction(EF) method were consistent with lysimeter measurements for all four months(R-2=0.937, RMSE=0.668 mm). It was proved in this study that CR model can be used to estimate precision field scale ET with meteorological data and high resolution remote sensing data together in a region with limited ground data availability.

分类号:

  • 相关文献

[1]Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations. Yang, Guijun,Zhao, Chunjiang,Xue, Xuzhang,Yang, Guijun,Yang, Guijun,Pu, Ruiliang. 2014

[2]Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Gu, Limin,Liu, Tiening,Wang, Jingfeng,Liu, Peng,Dong, Shuting,Zhang, Jiwang,Zhao, Bin,Gu, Limin,Liu, Tiening,Zhao, Bingqiang,Li, Juan,So, Hwat-Bing.

[3]A lysimeters study of Chinese wheat and maize varieties: I. The lysimeters-rain shelter facility and the growth and water use of wheat. Gu, Limin,Liu, Peng,Shao, Lijie,Wang, Jingfeng,Dong, Shuting,Zhang, Jiwang,Zhao, Bin,Zhao, Bingqiang,Sun, Wenyan,So, Hwat-Bing.

[4]Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard. Ouyang, Z. -P.,Guo, J. -X.,Mei, X. -R.,Li, Y. -Z..

[5]The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Hao, Yanbin,Wang, Yanfen,Mei, Xurong,Cui, Xiaoyong.

[6]Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Gong, Daozhi,Kang, Shaozhong,Yao, Limin,Zhang, Lu.

[7]Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Li, Zhouyuan,Wu, Wenzhao,Liu, Xuehua,Liu, Xinchao,Li, Zhouyuan,Wu, Wenzhao,Liu, Xuehua,Liu, Xinchao,Li, Zhouyuan,Fath, Brian D.,Sun, Hailian,Liu, Xinchao,Sun, Hailian,Liu, Xinchao,Xiao, Xinru,Cao, Jun.

[8]The Characteristics of Annual Water Consumption for Winter Wheat and Summer Maize in North China Plain. Kong, Fanlei,Shi, Leigang,Chen, Fu,Cai, Wantao. 2012

[9]Temporal-spatial variation of evapotranspiration in the Yellow River Delta based on an integrated remote sensing model. Li, He,Chen, Zhongxin,Jiang, Zhiwei,Sun, Liang,Liu, Ke,Liu, Bin,Li, He,Chen, Zhongxin,Jiang, Zhiwei,Sun, Liang,Liu, Ke,Liu, Bin. 2015

[10]Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Gao, Yang,Shen, Xiaojun,Li, Xinqiang,Sun, Jingsheng,Duan, Aiwang,Yang, Linlin,Wu, Laosheng. 2014

[11]Effect of Deficit Irrigation on the Growth, Water Use Characteristics and Yield of Cotton in Arid Northwest China. Yang Chuanjie,Luo Yi,Sun Lin,Yang Chuanjie,Wu Na,Wu Na. 2015

[12]Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. Yao, Yunjun,Liang, Shunlin,Li, Xianglan,Cheng, Jie,Zhang, Xiaotong,Jiang, Bo,Jia, Kun,Feng, Fei,Liang, Shunlin,Hong, Yang,Hong, Yang,Hong, Yang,Fisher, Joshua B.,Zhang, Nannan,Chen, Jiquan,Zhao, Shaohua,Sun, Liang,Wang, Kaicun,Chen, Yang,Mu, Qiaozhen. 2014

[13]APPLICATION OF ENERGY AND WATER BALANCE METHODS: A COMPARATIVE STUDY ON WHEAT EVAPOTRANSPIRATION RATES. Liu, Xiaofei,Fei, Liangjun,Duan, Aiwang,Meng, Zhaojiang,Liu, Zugui,Zhang, Jiyang,Zhang, Yingying,Duan, Aiwang,Meng, Zhaojiang,Liu, Zugui,Zhang, Jiyang,Zhang, Yingying. 2017

[14]CO(2)H(2)O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Wang, Yanfen,Cui, Xiaoyong,Zhou, Xiaoqi,Niu, Haishan,Hao, Yanbin,Huang, Xiangzhong,Cui, Xiaoyong,Mei, Xurong. 2008

[15]Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Zhang, Si-Yi,Li, Xiao-Yan,Zhang, Si-Yi,Li, Xiao-Yan,Zhao, Guo-Qin,Huang, Yong-Mei,Zhang, Si-Yi. 2016

[16]Global warming, rice production, and water use in China: Developing a probabilistic assessment. Sakamoto, Toshihiro,Yokozawa, Masayuki,Tao, Fulu,Tao, Fulu,Hayashi, Yousay,Zhang, Zhao. 2008

[17]Water use assessment in alley cropping systems within subtropical China. Zhao, Ying,Zhao, Ying,Zhang, Bin,Zhang, Bin,Hill, Robert. 2012

[18]Estimation of maize evapotranspiration using extreme learning machine and generalized regression neural network on the China Loess Plateau. Feng, Yu,Gong, Daozhi,Mei, Xurong,Cui, Ningbo. 2017

[19]Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate. Lv, Lihua,Yao, Yanrong,Zhang, Lihua,Jia, Xiuling,Liang, Shuangbo. 2013

[20]Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China. Feng, Yu,Cui, Ningbo,Zhao, Lu,Feng, Yu,Cui, Ningbo,Zhao, Lu,Du, Taisheng,Feng, Yu,Gong, Daozhi,Cui, Ningbo,Hu, Xiaotao.

作者其他论文 更多>>