HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF

文献类型: 外文期刊

第一作者: Luo Juhua

作者: Luo Juhua;Huang Wenjiang;Guan Qingsong;Zhao Jinling;Zhang Jingcheng

作者机构:

关键词: Hyperspectral imaging;Aphid;Leaf;Spectral index;Principal component analysis (PCA)

期刊名称:2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)

ISSN: 2153-6996

年卷期: 2013 年

页码:

收录情况: SCI

摘要: Wheat aphid, Sitobion avenae F. is the most destructive insect infesting winter wheat and appears almost annually in northwest China. Past studies have demonstrated the potential of remote sensing for detecting diseases and insects damage. In the study, hyperspectral imaging in the visible and near-infrared (500-900nm) region was tried to determinate aphid of wheat leaf and detect damage region of winter leaf caused by aphid. The principal component analysis (PCA) and spectral indices which used to monitor some stresses were applied to extract aphid information. The result showed that the classification result was better based on the second principal component (PC2) image and the third principal component (PC3) image by principal component (PC) transformation than spectral indices. Then, the mean reflectance of pixels with aphid and pixels without aphid was obtained, respectively, and the most sensitive reflectance regions to aphid were selected in visible and near-infrared by comparing the reflectance difference of two classes. Further, Leaf aphid damage index (LADI) was established according to two the sensitive reflectance region, and the leaf region with aphid, the infested leaf region and healthy leaf region were classified by LADI value of image. The result showed that the aphid damage area ratio of each wheat leaf estimated by pixels number of three classes was consistent with the survey the damage area ratio. So LADI had potential for detecting the leaf damage region caused by aphid.

分类号:

  • 相关文献

[1]Prediction of soil organic matter content in a litchi orchard of South China using spectral indices. Li, Dan,Chen, Xiuzhi,Chen, Shuisen,Han, Liusheng,Li, Dan,Chen, Xiuzhi,Chen, Shuisen,Han, Liusheng,Li, Dan,Chen, Xiuzhi,Han, Liusheng,Peng, Zhiping,Chen, Weiqi,Chen, Shuisen,Li, Yongjie.

[2]Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data. Xu, Xin-gang,Gu, Xiao-he,Song, Xiao-yu,Xu, Bo,Yu, Hai-yang,Yang, Gui-jun,Feng, Hai-kuan. 2016

[3]Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat. Xu, Xingang,Song, Xiaoyu,Li, Cunjun,Wang, Jihua. 2012

[4]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[5]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xu, Xin-gang,Yang, Xiao-dong,Gu, Xiao-he,Yang, Hao,Feng, Hai-kuan,Yang, Gui-jun,Song, Xiao-yu. 2015

[6]Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data. Jin, Xiuliang,Jin, Xiuliang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Jin, Xiuliang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Wang, Jihua,Lan, Yubin. 2018

[7]Estimation the leaf phosphorus concentration of litchi (Litchi chinensis Sonn.) at different growth stages by canopy reflectance. Wang, Chongyang,Chen, Shuisen,Li, Dan,Liu, Wei,Huang, Siyu,Peng, Zhiping. 2015

[8]Source Apportionment of PAHs Using Two Mathematical Models for Mangrove Sediments in Shantou Coastal Zone, China. Cao, Qimin,Chen, Guizhu,Cao, Qimin,Cao, Qimin,Cao, Qimin,Chen, Guizhu,Wang, Hua.

[9]Sensory evaluation, physicochemical properties and aroma-active profiles in a diverse collection of Chinese bayberry (Myrica rubra) cultivars. Cheng, Huan,Chen, Jianle,Chen, Shiguo,Liu, Donghong,Ye, Xingqian,Xia, Qile.

[10]Analysis of Volatiles during Grape Deterioration Using FTIR. Wang Wenzhong,Dong Daming,Zheng Wengang,Jiao Leizi,Zhao Xiande,Wang Wenzhong,Han Junfeng,Ye Song. 2013

[11]Water quality of a tributary of the Pearl River, the Beijiang, Southern China: implications from multivariate statistical analyses. Song, Ming W.,Huang, Ping,Zhang, Hui,Li, Feng,Xie, Kai Z.,Wang, Xi H.,He, Guo X.. 2011

[12]Interpreting RADARSAT-2 Quad-Polarization SAR Signatures From Rice Paddy Based on Experiments. Yang, Shenbin,Zhao, Xiaoyan,Hua, Guoqiang,Li, Bingbai. 2012

[13]Monitoring Freeze Stress Levels on Winter Wheat from Hyperspectral Reflectance Data Using Principal Component Analysis. Wang Hui-fang,Huo Zhi-guo,Wang Hui-fang,Wang Ji-hua,Dong Ying-ying,Gu Xiao-he. 2014

[14]Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice (Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage. Hu Biao-lin,Zhang Tao,Wan Yong,Li Xia,Xie Jian-kun,Hu Biao-lin,Fu Xue-qin,Huang Yun-hong,Dai Liang-fang,Luo Xiang-dong,Xie Jian-kun. 2011

[15]Estimating rice brown spot disease severity based on principal component analysis and radial basis function neural network. Liu Zhan-yu,Huang Jing-feng,Tao Rong-xiang,Zhang Hong-zhi. 2008

[16]Gas Chromatographic-Mass Spectrometry and Chemometric Analysis for Detection and Quantification of Paraffin in Beeswax. Chen, Fang,Chen, Lanzhen,Zhao, Jing,Xue, Xiaofeng,Wu, Liming,Zheng, Chuangmu.

[17]Weed and insect control affected by mixing insecticides with glyphosate in cotton. MA Xiao-yan,WU Han-wen,JIANG Wei-li,MA Ya-jie,MA Yan.

[18]The genetic diversity of SMLS (Sitobion miscanthi L type symbiont) and its effect on the fitness, mitochondrial DNA diversity and Buchnera aphidicola dynamic of wheat aphid, Sitobion miscanthi (Hemiptera: Aphididae). Li, Tong,Jiang, Yue-Li,Zhang, Li,Duan, Yun,Miao, Jin,Gong, Zhong-Jun,Wu, Yu-Qing,Wu, Xu-Jin.

[19]Demographic Changes in Multigeneration Plutella xylostella (Lepidoptera: Plutellidae) After Exposure to Sublethal Concentrations of Spinosad. Yin, Xian-Hui,Wu, Qing-Jun,Zhang, You-Jun,Xu, Bao-Yun,Yin, Xian-Hui,Li, Xue-Feng,Wu, Qing-Jun.

[20]Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Lu, Y. -H.,Zheng, X. -S.,Lu, Y. -H.,Gao, X. -W..

作者其他论文 更多>>