Determination of Cr, Cu, Zn, Pb and As in Soil by Field Portable X-Ray Fluorescence Spectrometry

文献类型: 外文期刊

第一作者: Lu An-xiang

作者: Lu An-xiang;Wang Ji-hua;Pan Li-gang;Han Ping;Lu An-xiang;Wang Ji-hua;Pan Li-gang;Han Ping;Han Ying

作者机构:

关键词: X-ray fluorescence;Soil;Heavy metal;Rapid analysis

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2010 年 30 卷 10 期

页码:

收录情况: SCI

摘要: Total concentrations of Cr, Cu, Zn, Pb and As were determined in soil samples from Beijing, Xinjiang, Heilongjiang, Yunnan, and Jiangsu provinces, using field portable X-ray fluorescence spectrometry (XRF). The relationship between XRF analysis results and the concentration of heavy metals in soils was established. The influence of soil particle size and humidity was also considered. Experiments showed that the particle size of soil affected XRF performance. While particle size decreased from 420 to 180 mu m, the relative standard deviation (RSD) of XRF detect results reduced from 15.6% to 6.9%. Soil humidity mainly affected the counts of XRF measured. As the soil water content increased from 5% to 25%, the analysis result's relative ratio of humid soil samples to oven dried soil samples decreased from 86% to 69%, according with the equation 1=100e(-0.015c) where 1 means relative ratio, and c means water content (R(2) =0. 83, n=30). A high degree of linearity was found for all the five heavy metals with the XRF measurement in the range of 0 to 1 500 mg . kg(-1). But the linearity equation was not the same among these soils. The linearity equation established with Yunnan soil has a small slope because of higher Fe concentration in soil. The performance of instrument was assessed by comparing XRF analysis result with the standard sample reference, and the result showed that XRF is an effective tool for rapid, quantitative monitoring of soil metal contamination.

分类号:

  • 相关文献

[1]Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform. Li, Fang,Lu, Anxiang,Wang, Jihua,Li, Fang,Lu, Anxiang,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[2]Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Ye, Xuezhu,Xiao, Wendan,Zhang, Yongzhi,Zhao, Shouping,Wang, Gangjun,Zhang, Qi,Wang, Qiang.

[3]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[4]Effects of Land Use on Heavy Metal Accumulation in Soils and Sources Analysis. Bai Ling-yu,Zeng Xi-bai,Li Lian-fang,Li Shu-hui,Pen Chang. 2010

[5]Spatial Variations of Heavy Metals in the Soils of Vegetable-Growing Land along Urban-Rural Gradient of Nanjing, China. Pan, Jian-Jun,Fang, Shi-Bo,Hu, Hao,Sun, Wan-Chun. 2011

[6]Rapid Analysis of Indoxacarb Residues in Vegetable by QuEChERS and LC-MS/MS. Shao, Hua,Jin, Mao-Jun,Jin, Fen,Huang, Yu-Ting,Wang, Jing,Li, Ying.

[7]Influence of a heavy rainfall event on the leaching of [C-14]isoproturon and its degradation products in outdoor lysimeters. Doerfler, Ulrike,Cao, Guoyin,Grundmann, Sabine,Schroll, Reiner.

[8]Protective function of narrow grass hedges on soil and water loss on sloping croplands in Northern China. Xiao, Bo,Wang, Qing-hai,Wu, Ju-ying,Huang, Chuan-wei,Yu, Ding-fang,Xiao, Bo.

[9]Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Zhang, Shujie,Chao, Ying,Zhang, Chunlei,Cheng, Jing,Li, Jun,Ma, Ni.

[10]N, P Contribution and soil adaptability of four arbuscular mycorrhizal fungi. Wenke, Liu.

[11]Effects of Zinc and Chromium Stresses on Heavy Metal Accumulation of Rice Roots at Different Growth Stages of Rice Plants. Zhu, Xuemei,Zhang, Qingsong,Ma, Xiang,Ye, Linchun,Lin, Lijin,Liu, Qihua,Shao, Jirong. 2010

[12]Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review. Li, Xin,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Zhang, Wen,Ding, Xiaoxia,Li, Xin,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Ding, Xiaoxia,Li, Xin,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Li, Peiwu,Zhang, Wen,Ding, Xiaoxia,Zhang, Wen,Ding, Xiaoxia.

[13]Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping. Zhou, Shiwei,Xu, Minggang,Sun, Nan,Liu, Jing,Lv, Jialong.

[14]Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research?. Xiong, Jie,Fu, Guanfu,Yang, Yongjie,Tao, Longxing,Yang, Yongjie,Zhu, Cheng.

[15]Spatial distribution and controlling factors of heavy metals contents in paddy soil and crop grains of rice-wheat cropping system along highway in East China. Zhang, Weijian,Feng, Jinfei,Zhao, Jian,Bian, Xinmin,Zhang, Weijian.

[16]Source attributions of heavy metals in rice plant along highway in Eastern China. Feng, Jinfei,Zhao, Jian,Zhu, Liqun,Bian, Xinmin,Zhang, Weijian,Wang, Yinxi,Zhang, Weijian.

[17]Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Gu, Yang Guang,Li, Qu Sheng,Fang, Jian Hong,He, Bao Yan,Fu, Hong Bo,Tong, Ze Jun,Li, Qu Sheng,He, Bao Yan,Fu, Hong Bo,Tong, Ze Jun,Fang, Jian Hong,Gu, Yang Guang,Gu, Yang Guang.

[18]Relative influence of sediment variables on mangrove community assembly in Leizhou Peninsula, China. Liu, Jing,Ma, Keming,Qu, Laiye,Liu, Jing.

[19]Roles of nitric oxide in alleviating heavy metal toxicity in plants. Xiong, Jie,Fu, Guanfu,Tao, Longxing,Zhu, Cheng.

[20]Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge. Jin, Hongmei,Chang, Zhizhou,Jin, Hongmei,Arazo, Renato O.,Capareda, Sergio,Jin, Hongmei,Chang, Zhizhou,Arazo, Renato O.,Gao, Jun.

作者其他论文 更多>>