Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1

文献类型: 外文期刊

第一作者: Li, RF

作者: Li, RF;Wei, JH;Wang, HZ;He, J;Sun, ZY

作者机构:

关键词: Agrobacterium-mediated transformation;CBF1;chilling tolerance;embryogenic callus;Zoysia sinica Hance

期刊名称:PLANT CELL TISSUE AND ORGAN CULTURE ( 影响因子:2.711; 五年影响因子:2.73 )

ISSN: 0167-6857

年卷期: 2006 年 85 卷 3 期

页码:

收录情况: SCI

摘要: Chinese lawngrass (Zoysia sinica Hance) is a warm-season turfgrass, which is widely used for golf courses, athletic fields and home lawns. In order to improve Chinese lawngrass with biotechnology, an efficient plant regeneration system was established. Five highly regenerable callus lines have been developed by addition of 6-benzylaminopurine (6-BA) and adjusting concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) in culture medium after multiple subculture, of which callus line Zh44 was used for Agrobacterium-mediated transformation. The gene, encoding C-repeat/dehydration-responsive element binding factor 1 (CBF1/DREB1b) from Arabidopsis driven by cauliflower mosaic virus (CaMV) 35S promoter, was introduced into Chinese lawngrass under selection using the bar gene with glufosinate. Three independent transgenic lines were successfully obtained using a three-step selection/regeneration procedure. The transgenic plants were confirmed by polymerase chain reaction (PCR), southern blot and reverse transcriptase polymerase chain reaction (RT-PCR) analyses. Two transgenic lines exhibited growth retardation and decreased tillering. The transgenic lines have a significantly stronger chilling tolerance than that of wild type plants, measured by ion leakage, total chlorophyll content and yellowed leaf rate in chilling conditions.

分类号:

  • 相关文献

[1]VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Dong, Chang,Zhang, Zhen,Ren, Junpeng,Huang, Jinfeng,Cai, Binhua,Tao, Jianmin,Dong, Chang,Qin, Yang,Wang, Bailin,Lu, Huiling.

[2]Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. Liu, Cheng-hong,Lu, Rui-ju,Guo, Gui-mei,He, Ting,Li, Ying-bo,Xu, Hong-wei,Gao, Run-hong,Chen, Zhi-wei,Huang, Jian-hua,Liu, Cheng-hong,Lu, Rui-ju,Guo, Gui-mei,He, Ting,Li, Ying-bo,Xu, Hong-wei,Gao, Run-hong,Chen, Zhi-wei,Huang, Jian-hua.

[3]High-frequency plantlet regeneration by somatic embryogenesis from mature zygotic embryos of onion. Wu, X.,Yang, F.,Piao, X. C.,Li, K. H.,Lian, M. L.,Dai, Y..

[4]A method to suppress the browning in banana (Musa, AAA) embryogenic callus induced. Chang, S.,Shu, H.,Chang, S.,Shu, H.,Chang, S.. 2013

[5]Genotype x environment interactions for chilling tolerance of rice recombinant inbred lines under different low temperature environments. Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Chin, Joong-Hyoun,Han, Longzhi,Xuan, Yingshi,Yuan, Donglin,Xu, Furong,Dai, Luyuan,Yea, Jong-Doo.

[6]Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit. Ding, Yang,Zhao, Jinhong,Nie, Ying,Fan, Bei,Wu, Shujuan,Zhang, Yu,Tang, Xuanming,Sheng, Jiping,Shen, Lin,Zhao, Ruirui.

[7]Low-temperature conditioning induces chilling tolerance in 'Hayward' kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels. Yang, Qingzhen,Rao, Jingping,Wang, Yuping,Sun, Zhenying,Ma, Qiushi,Dong, Xiaoqing,Yang, Qingzhen,Zhang, Zhengke. 2013

[8]Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco. Dong, Chang,Zhang, Zhen,Ren, Junpeng,Huang, Jinfeng,Wang, Yan,Cai, Binhua,Tao, Jianmin,Dong, Chang,Qin, Yang,Wang, Bailin. 2013

[9]Effects of Postharvest Gibberellic Acid Treatment on Chilling Tolerance in Cold-Stored Tomato (Solanum lycopersicum L.) Fruit. Zhu, Zhen,Ding, Yang,Zhao, Jinhong,Nie, Ying,Zhang, Yu,Tang, Xuanming,Sheng, Jiping.

[10]Variation of photosynthetic tolerance of rice cultivars (Oryza sativa L.) to chilling temperature in the light. Li, Xia,Cao, Kun,Wang, Chao,Sun, Zhi-wei,Yan, Lina. 2010

[11]Inhibition of glutathione synthesis decreases chilling tolerance in Chorispora bungeana callus. Wu, Jianmin,Zhao, Zhiguang,An, Lizhe,Liu, Yanhong,Xu, Shijian,Gao, Dahai,An, Lizhe,Zhang, Youfu,Liu, Yanhong. 2008

[12]A P4-ATPase Gene GbPATP of Cotton Confers Chilling Tolerance in Plants. Liu, Tingli,Guo, Shiwei,Lian, Ziyi,Chen, Fei,Yang, Yuwen,Chen, Tianzi,Ling, Xitie,Liu, Aiming,Zhang, Baolong,Wang, Rongfu.

[13]Effects of Calcium and Calmodulin Antagonists on Chilling Stress-Induced Proline Accumulation in Jatropha curcas L.. Yang, Shuang-Long,Deng, Feng-Fei,Gong, Ming,Lan, Shan-Shan.

[14]Molecular characterization of a cold-responsive RING-H2 finger gene from banana fruit and its interaction with MaMYC2a. Chen, Jiao,Kuang, Jian-Fei,Shan, Wei,Wang, Jun-ning,Xiao, Yun-yi,Chen, Jian-ye,Lu, Wang-jin,Chen, Jiao,Wang, Jun-ning.

[15]Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Liu, Liying,Duan, Liusheng,Zhang, Jiachang,Zhang, Zhenxian,Ren, Huazhong,Mi, Guoquan.

[16]Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Song, Zhang-yue,Tian, Jing-luan,Fu, Wei-zhe,Li, Lin,Lu, Ling-hong,Zhou, Lian,Shou, Hui-xia,Shan, Zhi-hui,Tang, Gui-xiang. 2013

[17]An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Duan, Yongbo,Li, Hao,Li, Juan,Ni, Dahu,Song, Fengshun,Li, Li,Yang, Jianbo,Duan, Yongbo,Song, Fengshun,Zhai, Chenguang,Mei, Wenqian,Gui, Huaping,Zhang, Wanggen,Li, Hao,Li, Juan,Ni, Dahu. 2012

[18]Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation. Wang, Gen-Ping,Yu, Xiu-Dao,Sun, Yong-Wei,Xia, Lan-Qin,Wang, Gen-Ping,Jones, Huw D.. 2016

[19]Mannose selection system used for cucumber transformation. He, Zhengquan,Duan, ZhenZhen,Liang, Wei,Chen, Faju,Yao, Wei,Liang, Hongwei,Yue, Chaoyin,Sun, Zongxiu,Chen, Fan,Dai, Jianwu. 2006

[20]Construction of two Gateway vectors for gene expression in fungi. Zhu, Tingheng,Yang, Xiao,Wang, Kun,Cui, Zhifeng,Wang, Weixia. 2009

作者其他论文 更多>>