Identification, Mapping, and Molecular Marker Development for Rgsr8.1: A New Quantitative Trait Locus Conferring Resistance to Gibberella Stalk Rot in Maize (Zea mays L.)

文献类型: 外文期刊

第一作者: Song, Jun

作者: Song, Jun;Du, Wen-Ping;Xu, Li-Yuan;Jiang, Yun;Zhang, Jie;Xiang, Xiao-Li;Yu, Gui-Rong

作者机构:

关键词: maize stalk rot;next-generation sequence;QTL-seq;finely map;resistance QTL;Gibberella;candidate gene

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Maize stalk rot is a major fungal disease worldwide, and is difficult to control by chemical methods. Therefore, in maize breeding, quantitative trait loci (QTLs) conferring resistance are important for controlling the disease. Next-generation sequencing technologies are considered a rapid and efficient method to establish the association of agronomic traits with molecular markers or candidate genes. In the present study, we employed QTL-seq, which is a whole-genome resequencing-based approach, to identify candidate genomic regions conferring resistance to maize stalk rot. A novel resistance QTL Rgsr8.1 was finely mapped, conferring broad-spectrum resistance to Gibberella stalk rot (GSR). Segregation analysis in F-2 and BC1F1 populations, which were derived from a cross between 18327 (Susceptible) and S72356 (Resistant), indicated that the resistance to GSR was likely to be a quantitatively inherited trait in maize. The result of QTL-seq showed that the resistance to GSR was mapped on chromosome 8 from 161.001 to 170.6 Mb. Based on the simple sequence repeat (SSR) markers, single-nucleotide polymorphism (SNP) markers, and the recombinant test, the location of Rgsr8.1 was narrowed down to 2.04 Mb, flanked by SSR-65 and SNP-25 markers at the physical location from 164.69 to 166.72 Mb based on the maize reference genome. In this region, two candidate resistant genes were found with, one auxin-responsive elements and the other encoding a disease resistance protein. In summary, these results will be useful in maize breeding programs to improve the resistance to GSR in maize.

分类号:

  • 相关文献

[1]Effect of Potassium on Ultrastructure of Maize Stalk Pith and Young Root and Their Relation to Stalk Rot Resistance. Li Wen-juan,He Ping,Jin Ji-yun. 2010

[2]A novel protease-resistant alpha-galactosidase with high hydrolytic activity from Gibberella sp F75: gene cloning, expression, and enzymatic characterization. Cao, Yanan,Wang, Yaru,Meng, Kun,Bai, Yingguo,Shi, Pengjun,Luo, Huiying,Yang, Peilong,Zhou, Zhigang,Yao, Bin,Zhang, Zhifang. 2009

[3]Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings. Luo Xiang-dong,Liu Jian,Zhao Jun,Dai Liang-fang,Chen Ya-ling,Zhang Ling,Zhang Fan-tao,Xie Jian-kun,Hu Biao-lin. 2018

[4]Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Junji Su,Chaoyou Pang,Hengling Wei,Libei Li,Bing Liang,Caixiang Wang,Meizhen Song,Hantao Wang,Shuqi Zhao,Xiaoyun Jia,Guangzhi Mao,Long Huang,Dandan Geng,Chengshe Wang,Shuli Fan. 2016

[5]Association of Candidate Genes With Submergence Response in Perennial Ryegrass. Wang, Xicheng,Wang, Xicheng,Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Xiao, Xiangye,Zhao, Xiongwei,Song, Xin. 2017

[6]Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Li, Tinggang,Ma, Xuefeng,Li, Nanyang,Zhou, Lei,Gui, Yuejing,Bao, Yuming,Chen, Jieyin,Dai, Xiaofeng,Liu, Zheng,Han, Huanyong. 2017

[7]Up-regulation of NLRC5 and NF-kappa B signaling pathway in carrier chickens challenged with Salmonella enterica Serovar Pullorum at different persistence periods. Liu, Xiangping,Sheng, Zhongwei,Dou, Xinhong,Wang, Kehua,Ma, Teng,Wang, Hongzhi,Li, Zhiteng,Pan, Zhiming,Chang, Guobin,Chen, Guohong. 2015

[8]Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. Zhang, Shaojun,Yang, Wenzhu,Zhao, Qianqian,Zhou, Xiaojin,Jiang, Ling,Ma, Shuai,Liu, Xiaoqing,Li, Ye,Zhang, Chunyi,Fan, Yunliu,Chen, Rumei,Zhang, Shaojun,Yang, Wenzhu,Zhao, Qianqian,Zhou, Xiaojin,Jiang, Ling,Liu, Xiaoqing,Li, Ye,Zhang, Chunyi,Fan, Yunliu,Chen, Rumei. 2016

[9]Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. Batayeva, Dariga,Dyuskalieva, Gulzhamal,Labaco, Benedick,Ye, Changrong,Vergara, Georgina,Reinke, Russell,Leung, Hei,Ye, Changrong,Li, Xiaolin,Usenbekov, Bakdaulet,Rysbekova, Aiman. 2018

[10]An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye, Jiang,Yang, Yuhua,Shi, Jiaqin,Zhan, Jiepeng,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Chen, Bo,Luo, Meizhong. 2017

[11]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

[12]Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Wu, Xun,Li, Yongxiang,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Li, Chunhui,Li, Yu,Wang, Tianyu,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu,Wu, Xun,Zhang, Zhiwu.

[13]Genome-wide study refines the quantitative trait locus for number of ribs in a Large White x Minzhu intercross pig population and reveals a new candidate gene. Zhang, Long-Chao,Yue, Jing-Wei,Pu, Lei,Wang, Li-Gang,Liu, Xin,Liang, Jing,Yan, Hua,Zhao, Ke-Bin,Li, Na,Shi, Hui-Bi,Zhang, Yue-Bo,Wang, Li-Xian.

[14]Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Qi Zhaoming,Zhang Xiaoying,Qi Huidong,Xin Dawei,Han Xue,Jiang Hongwei,Zhang Zhanguo,Zhang Jinzhu,Zhu Rongsheng,Hu Zhenbang,Liu Chunyan,Wu Xiaoxia,Chen Qingshan,Che Daidi,Han Xue,Jiang Hongwei,Liu Chunyan,Yin Zhengong.

[15]Polymorphisms associated with egg number at 300 days of age in chickens. Xu, H. P.,Zeng, H.,Zhang, D. X.,Jia, X. L.,Nie, Q. H.,Zhang, X. Q.,Luo, C. L.,Fang, M. X.. 2011

[16]Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala). Liu, Xiao-ping,Gao, Bao-zhen,Han, Feng-qing,Fang, Zhi-yuan,Yang, Li-mei,Zhuang, Mu,Lv, Hong-hao,Liu, Yu-mei,Li, Zhan-sheng,Cai, Cheng-cheng,Yu, Hai-long,Li, Zhi-yuan,Zhang, Yang-yong. 2017

[17]Quantitative trait loci for the number of vertebrae on Sus scrofa chromosomes 1 and 7 independently influence the numbers of thoracic and lumbar vertebrae in pigs. Zhang Long-chao,Liu Xin,Liang Jing,Yan Hua,Zhao Ke-bin,Li Na,Pu Lei,Shi Hui-bi,Zhang Yue-bo,Wang Li-gang,Wang Li-xian. 2015

[18]Zea mays NAC transcription factor family members: their genomic characteristics and relationship with drought stress. Li, Liang,Ma, Yiwen,Li, Liang,Ma, Yiwen,Zhang, Shihuang,Hao, Zhuanfang,Li, Xinhai. 2015

[19]Genome-wide association study of blast resistance in indica rice. Wang, Caihong,Yang, Yaolong,Yuan, Xiaoping,Xu, Qun,Feng, Yue,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Yang, Yaolong. 2014

[20]Identification of candidate genes associated with male sterility in CMS7311 of heading Chinese cabbage (Brassica campestris L. ssp pekinensis). Xu, Xiaoyong,Sun, Xilu,Zhang, Jing,Huang, Weiwei,Zhang, Lugang,Xu, Xiaoyong,Sun, Xilu,Zhang, Jing,Zhang, Lugang,Fang, Zhiyuan,Huang, Weiwei,Fang, Zhiyuan. 2013

作者其他论文 更多>>