Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq

文献类型: 外文期刊

第一作者: Wang, Xia

作者: Wang, Xia;Huang, Linkai;Zhang, Xinquan;Li, Zhou;Yan, Haidong;Zhu, Yongqun;Lin, Chaowen;Xu, Wenzhi;Luo, Fuxiang;Wang, Xie;Yao, Li;Peng, Dandan;Peng, Jianhua

作者机构:

关键词: Sudan grass;next-generation sequencing;differentially expressed genes;simple sequence repeat markers;PEG

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Sudan grass (Sorghum sudanense) is an annual warm-season gramineous forage grass that is widely used as pasture, hay, and silage. However, drought stress severely impacts its yield, and there is limited information about the mechanisms of drought tolerance in Sudan grass. In this study, we used next-generation sequencing to identify differentially expressed genes (DEGs) in the Sudan grass variety Wulate No. 1, and we developed simple sequence repeat (SSR) markers associated with drought stress. From 852,543,826 raw reads, nearly 816,854,366 clean reads were identified and used for analysis. A total of 80,686 unigenes were obtained via de novo assembly of the clean reads including 45,065 unigenes (55.9%) that were identified as coding sequences (CDSs). According to Gene Ontology analysis, 31,444 unigenes were annotated, 11,778 unigenes were identified to 25 categories in the clusters of orthologous groups of proteins (KOG) classification, and 11,223 unigenes were assigned to 280 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Additionally, there were 2,329 DEGs under a short-term of 25% polyethylene glycol (PEG) treatment, while 5,101 DEGs were identified under the long-term of 25% PEG treatment. DEGs were enriched in pathways of carbon fixation in photosynthetic organisms and plant hormone signal transduction which played a leading role in short-term of drought stress. However, DEGs were mainly enriched in pathway of plant hormone signal transduction that played an important role under long-term of drought stress. To increase accuracy, we excluded all the DEGs of all controls, specifically, five DEGs that were associated with high PEG concentrations were found through RNA-Seq. All five genes were up-regulated under drought stress, but the functions of the genes remain unclear. In addition, we identified 17,548 SSRs obtained from 80,686 unigenes. The newly identified drought tolerance DEGs will contribute to transgenic breeding efforts, while SSRs developed from high-throughput transcriptome data will facilitate marker-assisted selection for all traits in Sudan grass.

分类号:

  • 相关文献

[1]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[2]De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica. Zhang, Xiao-Xuan,Ma, Jian-Gang,Zhao, Quan,Zhang, Xiao-Xuan,Cong, Wei,Ma, Jian-Gang,Zhu, Xing-Quan,Cong, Wei,Elsheikha, Hany M.,Liu, Guo-Hua,Huang, Wei-Yi,Zhu, Xing-Quan.

[3]De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Chang, Qiao-Cheng,Wang, Chun-Ren,Liu, Guo-Hua,Xu, Min-Jun,Zhu, Xing-Quan,Xu, Min-Jun,Gao, Jun-Feng,Zhu, Xing-Quan. 2016

[4]Comparative transcriptome analysis of genes involved in the response of resistant and susceptible peach cultivars to nematode infection. Cao, Ke,Li, Haiyan,Wang, Qi,Zhao, Pei,Zhu, Gengrui,Fang, Weichao,Chen, Changwen,Wang, Xinwei,Wang, Lirong.

[5]Synthesis and characterization of surfactant PEG macromonomers with fluorocarbon end-capped groups and its copolymers. Liu, SP,Du, LB,Zhuang, DQ,Zhang, YX,Chen, JY,Jiang, M,Wu, SG,Swift, G. 2001

[6]Research on accumulation and change rule of sucrose in Helianthus tuberosus Linn. under PEG stress. Zhao, Meng-liang,Wang, Li-hui. 2015

[7]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[8]De novo assembly and characterization of the root transcriptome and development of simple sequence repeat markers in Paphiopedilum concolor. Li, D. M.,Zhao, C. Y.,Liu, X. R.,Liu, X. F.,Lin, Y. J.,Liu, J. W.,Chen, H. M.,Lu, F. B.. 2015

[9]Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.). Cao, L. Y.,Wu, W. M.,Shen, X. H.,Zhan, X. D.,Zhai, R. R.,Wang, R. C.,Chen, D. B.,Cheng, S. H.,Feng, Y..

[10]DEVELOPMENT AND CHARACTERIZATION OF 21 EST-DERIVED MICROSATELLITE MARKERS IN VICIA FABA (FAVA BEAN). Ma, Yu,Yang, Tao,Guan, Jianping,Wang, Shumin,Wang, Haifei,Sun, Xuelian,Zong, Xuxiao.

[11]A Simple Sequence Repeat Marker Linked to the Susceptibility of Apple to Alternaria Blotch Caused by Alternaria alternata Apple Pathotype. Zhang, Liyi,Cong, Peihua,Li, Ying,Zhang, Zhen,Cheng, Zong-Ming,Cheng, Zong-Ming.

[12]Replication of pistillate plants of Ricinus communis L. and investigation of the sex stability and genetic variation of the somaclones. Tan, Meilian,Yan, Mingfang,Wang, Lei,Yan, Xingchu,Fu, Chunling,Wang, Lijun. 2013

[13]Genetic diversity of melon landraces (Cucumis melo L.) in the Xinjiang Uygur Autonomous Region on the basis of simple sequence repeat markers. Zhang, Yongbing,Aierken, Yasheng,Ma, Xinli,Yi, Hongping,Wu, Mingzhu,Fan, Xiangbin.

[14]Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. Chen, Haoliang,Lin, Lulu,Ali, Farman,Xie, Minghui,Zhang, Guangling,Su, Weihua,Ali, Farman. 2017

[15]The complete chloroplast genome of Arabidopsis lyrata. Wu, Zhiqiang,Gu, Cuihua,Tembrock, Luke R.,Sun, Cheng. 2016

[16]De novo assembly and characterization of the transcriptome of the pancreatic fluke Eurytrema pancreaticum (trematoda: Dicrocoeliidae) using Illumina paired-end sequencing. Liu, Guo-Hua,Xu, Min-Jun,Song, Hui-Qun,Zhu, Xing-Quan,Wang, Chun-Ren,Zhu, Xing-Quan. 2016

[17]Complete mitochondrial genome of the kawakawa tuna Euthynnus affinis. Li, Mingming,Guo, Liang,Yang, Sen,Chen, Xinghan,Meng, Zining,Lin, Haoran,Zhang, Heng. 2016

[18]High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. Qi, Weicong,Lin, Feng,Zhao, Han,Liu, Yuhe,Huang, Bangquan,Cheng, Jihua,Zhang, Wei. 2016

[19]Next-Generation Sequencing from Bulked-Segregant Analysis Accelerates the Simultaneous Identification of Two Qualitative Genes in Soybean. Guo, Yong,Qiu, Li-Juan. 2017

[20]Next-generation sequencing of the mitochondrial genome of Dolichovespula panda (Hymenoptera: Vespidae) with a phylogenetic analysis of Vespidae. Fan, Xu-Lei,Tan, Qing-Qing,Tan, Jiang-Li,Fan, Xu-Lei,Gong, Ya-Jun,Chen, Peng-Yan,Wei, Shu-Jun. 2017

作者其他论文 更多>>