Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein

文献类型: 外文期刊

第一作者: Fang, Ji-Chao

作者: Fang, Ji-Chao;Cai, Ping-Zhong;Yan, Wen-Zhao;Wu, Jie;Guo, Hui-Fang

作者机构:

关键词: Bacillus thuringiensis serovar sotto;chitinase;touchdown PCR;gene cloning;characterization analysis

期刊名称:GENETICS AND MOLECULAR BIOLOGY ( 影响因子:1.771; 五年影响因子:2.584 )

ISSN: 1415-4757

年卷期: 2005 年 28 卷 4 期

页码:

收录情况: SCI

摘要: Chitinase plays a positive role in the pathogenicity of Bacillus thuringiensis to insect pests. We used touchdown PCR to clone the chitinase (Schi) gene from Bacillus thuringiensis serovar sotto (Bt sotto) chromosomal DNA. Our DNA sequencing analysis revealed that the Bt sotto Schi gene consists of an open reading frame (ORF) of 2067 nucleotides with codes for the chitinase precursor. We also found that the putative promoter consensus sequences (the -35 and -10 regions) of the Bt soto Schi gene are identical to those of the chiA71 gene from Bt Pakistani, the chiA74 gene from Bt kenyae and the ichi gene from Bt israelensis. The Schi chitinase precursor is 688 amino acids long with an estimated molecular mass of 75.75 kDa and a theoretical isoelectric point of 5.74, and contains four domains, which are, in sequence, a signal peptide, an N-terminal catalytic domain, a fibronectin type III like domain and a C-terminal chitin-binding domain. Sequence comparison and the evolutionary relationship of the Bt sotto Schi chitinase to other chitinase and chitinase-like proteins are also discussed.

分类号:

  • 相关文献

[1]Natural Occurrence of Wild tomato mosaic virus in Wild Eggplant in China. Zhang, Shaoyan,Yu, Naitong,Wang, Xiang,Liang, Jie,Xie, Huimin,Wang, Jianhua,Zhang, Yuliang,Liu, Zhixin,Yu, Naitong.

[2]Proteomic and immunological identification of two new allergens from silkworm (Bombyx mori L.) pupae. Zhao, Xiangjie,Li, Lin,Li, Bing,Zhao, Xiangjie,Kuang, Zheshi,Luo, Guoqing,Zhao, Xiangjie. 2015

[3]Physiological Responses of Watermelon Grafted onto Bottle Gourd to Fusarium oxysporum f. sp niveum Infection. Zhang, M.,Yang, X. P.,Xu, J. H.,Liu, G.,Yao, X. F.,Li, P. F.. 2015

[4]Six chitinases from oriental river prawn Macrobrachium nipponense: cDNA characterization, classification and mRNA expression during post-embryonic development and moulting cycle. Zhang, Shiyong,Fu, Hongtuo,Jiang, Fengwei,Jin, Shubo,Jiang, Sufei,Xiong, Yiwei,Fu, Hongtuo,Sun, Shengming,Qiao, Hui,Zhang, Wenyi,Jin, Shubo,Gong, Yongsheng. 2014

[5]Overexpression of the mulberry latex gene MaMLX-Q1 enhances defense against Plutella xylostella in Arabidopsis thaliana. Liu, Yan,Ji, Dongfeng,Chen, Jine,Lin, Tianbao,Wei, Jia,Zhu, Yan,Lv, Zhiqiang. 2017

[6]Production of N-Acetyl-D-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-D-glucosaminidase. Wang, Di,Liu, Tian,Yang, Qing,Zhu, Weixing,Wang, Di,Liu, Tian,Yang, Qing,Yang, Qing.

[7]Characterisation of Isaria fumosorosea isolates and their virulence toward the Diamondback Moth, Plutella xylostella. Xie, Meiqiong,Zhao, Rui,He, Yurong,Wang, Longjiang,Lu, Lihua.

[8]Application of osthol induces a resistance response against powdery mildew in pumpkin leaves. Shi, Zhiqi,Wang, Fei,Zhou, Wei,Zhang, Peng,Fan, Yong Jian. 2007

[9]Microbial Secondary Metabolite, Phlegmacin B-1, as a Novel Inhibitor of Insect Chitinolytic Enzymes. Liu, Tian,Duan, Yanwei,Yang, Qing,Chen, Lei,Liu, Tian,Duan, Yanwei,Yang, Qing,Liu, Tian,Yang, Qing,Lu, Xinhua.

[10]The deduced role of a chitinase containing two nonsynergistic catalytic domains. Zhu, Weixing,Wang, Jing,Zhou, Yong,Duan, Yanwei,Qu, Mingbo,Yang, Qing,Liu, Tian,Zhu, Weixing,Wang, Jing,Zhou, Yong,Duan, Yanwei,Qu, Mingbo,Yang, Qing,Yang, Qing. 2018

[11]Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants. Dong, Xuan,Zhao, Yichen,Ran, Xin,Guo, Linxia,Zhao, De-Gang,Dong, Xuan,Zhao, Yichen,Ran, Xin,Guo, Linxia,Zhao, De-Gang,Dong, Xuan,Ran, Xin,Guo, Linxia,Zhao, De-Gang,Zhao, Yichen,Zhao, De-Gang. 2017

[12]High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture. Zhang, Yuting,Zhou, Zhigang,Liu, Yuchun,Cao, Yanan,He, Suxu,Huo, Fengmin,Qin, Chubin,Yao, Bin,Ringo, Einar.

[13]Microbial diversity in the sediment of a crab pond in Nanjing, China. Liu, Yuchun,Zhou, Zhigang,He, Suxu,Yao, Bin,Ringo, Einar. 2013

[14]Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism. Yang, Yalin,Li, Juan,Liu, Xuewei,Pan, Xingliang,Hou, Junxiu,Ran, Chao,Zhou, Zhigang. 2017

[15]Molecular mechanism of BjCHI1-mediated plant defense against Botrytis cinerea infection. Gao, Ying,Zhao, Kaijun. 2017

[16]Characterization and expression analysis of a chitinase gene (PmChi-5) from black tiger shrimp (Penaeus monodon) under pathogens infection and ambient ammonia-N stress. Zhou, Falin,Zhou, Kaimin,Huang, Jianhua,Yang, Qibin,Jiang, Song,Qiu, Lihua,Yang, Lishi,Jiang, Shigui. 2018

[17]The expression of a baculovirus-derived chitinase gene increased resistance of tobacco cultivars to brown spot (Alternaria alternata). Shi, J,Thomas, CJ,King, LA,Hawes, CR,Possee, RD,Edwards, ML,Pallett, D,Cooper, JI. 2000

[18]Characterization and expression analysis of chitinase genes (CHIT1, CHIT2 and CHIT3) in turbot (Scophthalmus maximus L.) following bacterial challenge. Gao, Chengbin,Cai, Xin,Song, Huanhuan,Wang Wenqi,Li, Chao,Su, Baofeng,Su, Baofeng,Zhang, Yu.

[19]Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites. Wu, Huiling,Li, Jinjin,Dong, Dan,Liu, Ting,Zhang, Taotao,Zhang, Dianpeng,Liu, Weicheng.

[20]Genome-wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. Su, C.,Tu, G.,Yang, Q.,Shahzad, M. F.,Li, F.,Huang, S.,Li, F..

作者其他论文 更多>>