Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC)

文献类型: 外文期刊

第一作者: Ai, YW

作者: Ai, YW;Zhang, FS;Lu, SH;Zeng, XZ;Fan, MS

作者机构:

关键词: N-15-labeled urea;nitrogen balance;Oryza sativa L.;plastic mulching;straw management;Triticum aestivum L.;water saving agriculture

期刊名称:NUTRIENT CYCLING IN AGROECOSYSTEMS ( 影响因子:3.27; 五年影响因子:3.767 )

ISSN: 1385-1314

年卷期: 2005 年 71 卷 3 期

页码:

收录情况: SCI

摘要: Non-flooded mulching cultivation (NFMC) for lowland rice, as a novel water-saving technique, has been practiced in many areas of China since the 1990s. However, the information on NFMC effects on crop production, nitrogen and water use in rice-wheat rotations is still limited. A field experiment using N-15-labeled urea was conducted to evaluate the impacts of NFMC on crop yield, fertilizer N recovery and water use efficiency in rice-wheat rotations. Plastic film mulching ( PM), and wheat straw and plastic film double mulching (SPM) resulted in the same rice grain yield (7.2 t ha(-1)) while wheat straw mulching (SM) and no mulching (NM) led to 5 and 10% yield reduction, compared with rice under traditional flooding (TF). In the rice-wheat rotation, crop productivity in PM, SM or SPM was comparable to that in TF but greater than in NM. Weed growth and its competition with rice for nitrogen were considered the main reason that led to yield decline in NM. Compared with TF, NFMC treatments did not obviously affect fertilizer N recoveries in plant and soil in both rice and wheat seasons. The total fertilizer N recoveries in crop, weed and soil in all treatments were only 39-44% in R-W rotations, suggesting that large N losses occurred following one basal N application for each growing season. Water use efficiency, however, was 56-75% greater in NFMC treatments than in TF treatment in the R-W rotation. The results revealed that NFMC ( except NM) can produce comparable rice and wheat yields and obtain similar fertilizer N recovery as TF with much less water consumption.

分类号:

  • 相关文献

[1]Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Jiang, RF,Liu, XJ,Zhang, FS,Lu, SH,Zeng, XZ,Christie, P. 2005

[2]Fate of N-15-labeled urea under a winter wheat-summer maize rotation on the North China Plain. Ju Xiao-Tang,Liu Xue-Jun,Pan Jia-Rong,Zhang Fu-Suo. 2007

[3]Enhanced plant growth, development and fiber yield of Bt transgenic cotton by an integration of plastic mulching and seedling transplanting. Dong, Hezhong,Li, Weijiang,Tang, Wei,Li, Zhenhuai,Zhang, Dongmei. 2007

[4]Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L). Lam.) in Northern China. Hou, Fuyun,Zhang, Liming,Xie, Beitao,Dong, Shunxu,Zhang, Haiyan,Li, Aixian,Wang, Qingmei.

[5]Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Liu, XJ,Jiang, RF,Zhang, FS,Lu, SH,Zeng, XZ,Christie, P. 2005

[6]Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management. Liu, Wei,Hussain, Saddam,Wu, Lishu,Qin, Ziguo,Li, Xiaokun,Lu, Jianwei,Khan, Fahad,Geng, Mingjian,Cao, Weidong.

[7]Long-term non-flooded mulching cultivation influences rice productivity and soil organic carbon. Lu, S. H.,Jiang, R. F.,Six, J.,Zhang, F. S.,Lu, S. H.,Six, J.. 2012

[8]Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Wassmann, R,Lantin, RS,Neue, HU,Buendia, LV,Corton, TM,Lu, Y. 2000

[9]Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system. Zhang, Mingqian,Bian, Xinmin,Zhang, Weijian,Zheng, Jianchu,Chen, Liugen,Shen, Mingxing,Zhang, Xin,Zhang, Jun,Zhang, Weijian.

[10]Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing PigsEffects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs. Han, Rui,Jiang, Hailong,Che, Dongsheng,Bao, Nan,Xiang, Dong,Liu, Feifei,Qin, Guixin,Han, Rui,Jiang, Hailong,Che, Dongsheng,Bao, Nan,Xiang, Dong,Liu, Feifei,Qin, Guixin,Yang, Huaming,Ban, Zhibin.

[11]Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Ju, XT,Kou, CL,Zhang, FS,Christie, P.

[12]Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. Zhao Chang-Xing,Song Xiao-Zong,Wang Xiao-Lan,Li Ji,Song Xiao-Zong,Zhao Chang-Xing. 2009

[13]Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Gu, Limin,Liu, Tiening,Wang, Jingfeng,Liu, Peng,Dong, Shuting,Zhang, Jiwang,Zhao, Bin,Gu, Limin,Liu, Tiening,Zhao, Bingqiang,Li, Juan,So, Hwat-Bing.

[14]Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture. Li, Shutian,Li, Shutian. 2013

[15]Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China. Bai Jin-shun,Cao Wei-dong,Zeng Nao-hua,Gao Song-juan,Cao Wei-dong,Xiong Jing,Katsuyoshi, Shimizu. 2015

[16]Modeling nitrogen loading from a watershed consisting of cropland and livestock farms in China using Manure-DNDC. Gao, Maofang,Qiu, Jianjun,Wang, Ligang,Li, Hu,Gao, Chunyu,Li, Changsheng. 2014

[17]Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China. Zhang, Tao,Liu, Hongbin,Zhai, Limei,Zhang, Dan,Wang, Hongyuan,Chen, Anqiang,Lei, Baokun,Liu, Jian.

[18]Effects of waste vinegar residue on nutrient digestibility and nitrogen balance in laying hens. Song, Z. T.,Dong, X. F.,Tong, J. M.,Wang, Z. H..

[19]Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. Miao, Jun,Sun, Jinghan,Liu, Dongcheng,Li, Bin,Zhang, Aimin,Li, Zhensheng,Tong, Yiping,Miao, Jun. 2009

[20]A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat. He, Xue,Fang, Jingjing,Li, Jingjuan,Qu, Baoyuan,Ren, Yongzhe,Ma, Wenying,Zhao, Xueqiang,Li, Bin,Wang, Daowen,Li, Zhensheng,Tong, Yiping,Fang, Jingjing,Li, Jingjuan,Ren, Yongzhe. 2014

作者其他论文 更多>>