Comparative transcriptome analysis of root hairs proliferation induced by water deficiency in maize

文献类型: 外文期刊

第一作者: Li, Tingchun

作者: Li, Tingchun;Yang, Huaying;Zhang, Wei;Xu, Dafeng;Dong, Qing;Wang, Fang;Lei, Yanli;Liu, Guihu;Zhou, Yingbing;Chen, Hongjian;Li, Cheng

作者机构:

关键词: Candidate genes;Drought-induced root hairs;Maize;Transcriptome analysis

期刊名称:JOURNAL OF PLANT BIOLOGY ( 影响因子:2.434; 五年影响因子:2.455 )

ISSN: 1226-9239

年卷期: 2017 年 60 卷 1 期

页码:

收录情况: SCI

摘要: Root hairs functions as water channels and nutritional components transporters in plants. It has been shown to enhance nutrient uptake including phosphate, nitrogen, potassium and calcium. In the experiment, the droughtinduced root hairs were collected. By transcriptome sequence and analysis, the molecular mechanisms and differentially expressed genes related to root hairs growth and development were studied. As a result, by using the HiSeq 2500 platform, 61,872,790 clean reads with 96.23% Q20 bases and 9.28 Gb clean bases with 58.88% GC ratio were obtained for normal root. In contrast with Control group, 67,650,572 clean reads with 96.43% Q20 bases and 10.15 Gb clean bases with 58.3% GC content were obtained for drought-induced root hairs. Totally, 323 differentially expressed genes (DEGs) were identified. Among these DEGs, 109 genes were upregulated and 214 genes were downregulated in drought-induced root hairs. Moreover, metabolic pathway enrichment analysises on the 323 DEGs revealed that totally 10 metabolic pathways were distinctly regulated. In details, alanine, aspartate and alutamate metabolism, galactose metabolism and nitrogen metabolism were significantly upregulated. 7 metabolic pathways such as phenylpropanoid biosynthesis, phenylalanine metabolism, biosynthesis of secondary metabolites and flavonoid biosynthesis were significantly downregulated. Furthermore, functional genes and transcription factors were both found to be involved in drought-induced root hair proliferation. These results will help us understand better the molecular mechanism of maize root hair growth and development.

分类号:

  • 相关文献

[1]Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes (Vitis davidii). Sun, Lei,Fan, Xiucai,Zhang, Ying,Jiang, Jianfu,Sun, Haisheng,Liu, Chonghuai. 2016

[2]High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. Xu, Ling,Zhang, Yan,Zhu, Mang,Zhong, Tao,Xu, Mingliang,Shao, Siquan,Chen, Wei,Tan, Jing,Fan, Xingming. 2014

[3]Mining for low-nitrogen tolerance genes by integrating meta-analysis and large-scale gene expression data from maize. Liu, Hailan,Su Shunzong,Zhang, Suzhi,Wu, Ling,Liu, Dan,Gao, Shibin,Luo, Bowen,Liu, Hailan,Su Shunzong,Zhang, Suzhi,Wu, Ling,Liu, Dan,Gao, Shibin,Tang, Haitao.

[4]Genome-Wide Discovery of Tissue-Specific Genes in Maize. Lin, Feng,Bao, Huabin,Zhao, Han,Bao, Huabin,Yang, Jun,Liu, Yuhe,Dai, Huixue.

[5]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[6]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[7]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[8]Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. Kumar, Pawan,He, Yajun,Singh, Rippy,Shen, Xinlian,Chee, Peng W.,Davis, Richard F.,Guo, Hui,Paterson, Andrew H.,Peterson, Daniel G.,Nichols, Robert L.,Shen, Xinlian,He, Yajun. 2016

[9]Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7. Zhao, Xue,Teng, Weili,Cao, Guanglu,Li, Dongmei,Han, Yingpeng,Li, Wenbin,Li, Yinghui,Qiu, Lijuan,Li, Dongmei,Zheng, Hongkun. 2017

[10]QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. Liang, Danna,Chen, Minyang,Qi, Xiaohua,Xu, Qiang,Zhou, Fucai,Chen, Xuehao,Liang, Danna. 2016

[11]Identification of loci and genes for growth related traits from a genome-wide association study in a slow- x fast-growing broiler chicken cross. Liu, Ranran,Sun, Yanfa,Zhao, Guiping,Wang, Hongyang,Zheng, Maiqing,Li, Peng,Liu, Li,Wen, Jie,Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Wang, Hongyang,Zheng, Maiqing,Wen, Jie.

[12]A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. Sun, Rui,Chang, Yuansheng,Wang, Yi,Li, Hui,Wu, Ting,Zhang, Xinzhong,Han, Zhenhai,Yang, Fengqiu,Zhao, Yongbo,Chen, Dongmei. 2015

[13]Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus. Zhao, Weiguo,Wang, Hao,Tian, Jianhua,Li, Baojun,Zhao, Weiguo,Wang, Hao,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Long, Yan,Xiang, Jun,Gan, Jianping,Li, Maoteng,Liang, Wusheng. 2016

[14]Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.). Liu, Jia,Wang, Wenxiang,Mei, Desheng,Wang, Hui,Fu, Li,Li, Yunchang,Hui, Qiong,Liu, Daoming. 2016

[15]Genome-Wide Linkage Analysis and Association Study Identifies Loci for Polydactyly in Chickens. Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Zheng, Maiqing,Sun, Yan,Yu, Xiaoqiong,Li, Peng,Wen, Jie,Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Zheng, Maiqing,Wen, Jie,Sun, Yanfa. 2014

[16]Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.)Using SLAF-seq. Xie, Dongwei,Dai, Zhigang,Yang, Zemao,Tang, Qing,Su, Jianguang,Xie, Dongwei,Zhao, Debao,Yang, Xue,Zhang, Liguo,Sun, Jian. 2018

[17]Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. Zhang, Bin,Ye, Weijun,Ren, Deyong,Tian, Peng,Peng, Youlin,Gao, Yang,Ruan, Banpu,Wang, Li,Zhang, Guangheng,Guo, Longbiao,Qian, Qian,Gao, Zhenyu. 2015

[18]Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Ren, Deyong,Rao, Yuchun,Huang, Lichao,Leng, Yujia,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Dong, Guojun,Guo, Longbiao,Qian, Qian,Zeng, Dali,Rao, Yuchun,Lu, Mei. 2016

[19]The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. Sun, Yanfa,Zhao, Guiping,Liu, Ranran,Zheng, Maiqing,Hu, Yaodong,Wu, Dan,Zhang, Lei,Li, Peng,Wen, Jie,Zhao, Guiping,Liu, Ranran,Zheng, Maiqing,Li, Peng,Wen, Jie,Sun, Yanfa,Wen, Jie. 2013

[20]Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Gong, Wen-bing,Zhou, Yan,Bian, Yin-bing,Xiao, Yang,Gong, Wen-bing,Li, Lei,Kwan, Hoi-shan,Cheung, Man-kit.

作者其他论文 更多>>