Agronomic Traits and Molecular Marker Identification of Wheat-Aegilops caudata Addition Lines

文献类型: 外文期刊

第一作者: Gong, Wenping

作者: Gong, Wenping;Han, Ran;Li, Haosheng;Song, Jianmin;Li, Genying;Liu, Aifeng;Cao, Xinyou;Guo, Jun;Zhai, Shengnan;Cheng, Dungong;Zhao, Zhendong;Liu, Cheng;Liu, Jianjun;Yan, Hongfei;Li, Genying;Cao, Xinyou;Liu, Cheng

作者机构:

关键词: Aegilops caudata;agronomic traits;disease resistance;molecular marker;chromosome rearrangement

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B-G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D-F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B-G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C-F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research.

分类号:

  • 相关文献

[1]Fine mapping of qSTV11(KAS), a major QTL for rice stripe disease resistance. Zhang, Ying-Xin,Wang, Qi,Jiang, Ling,Liu, Ling-Long,Wang, Bao-Xiang,Shen, Ying-Yue,Cheng, Xia-Nian,Wan, Jian-min,Wan, Jian-min.

[2]Construction of a Linkage Map and Identification of Resistance Gene Analog Markers for Root-knot Nematodes in Wild Peach, Prunus kansuensis. Cao, Ke,Wang, Lirong,Zhu, Gengrui,Fang, Weichao,Chen, Chenwen,Zhao, Pei.

[3]Hybridization of Aegilops caudata with Triticum durum, Triticum aestivum and the detection of alien chromatins. Kong, XY,Zhou, RH,Dong, YS,Jia, JZ. 1999

[4]Cloning and characterization of a C genome-specific repetitive sequence in Aegilops caudata L.. Kong, XY,Zhou, RH,Dong, YC,Jia, JZ. 1999

[5]Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Liu, Renzhong,Wang, Baohua,Guo, Wangzhen,Qin, Yongsheng,Zhang, Yuanming,Zhang, Tianzhen,Liu, Renzhong,Wang, Liguo. 2012

[6]Evaluation of agronomic and physiological traits associated with high temperature stress tolerance in the winter wheat cultivars. Cao, Xinyou,Cheng, Dungong,Wang, Canguo,Liu, Aifeng,Song, Jianming,Li, Haosheng,Zhao, Zhendong,Liu, Jianjun,Mondal, S.. 2015

[7]Developing a core collection of litchi (Litchi chinensis Sonn.) based on EST-SSR genotype data and agronomic traits. Sun, Qingming,Bai, Lijun,Xiang, Xu,Zhao, Junsheng,Ou, Liangxi,Ke, Lixiang. 2012

[8]Utilization of UPLC/Q-TOF-MS-Based Metabolomics and AFLP-Based Marker-Assisted Selection to Facilitate/Assist Conventional Breeding of Polygala tenuifolia. Li, Juan,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Qin, Xue-Mei,Zhang, Fu-Sheng,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Xu, Xiao-Shuang,Peng, Bing,Tian, Hong-Ling,Ma, Cun-Gen. 2017

[9]Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population. Zhang, H. M.,Hui, G. Q.,Luo, Q.,Liu, X. H.,Sun, Y.,Zhang, H. M.,Hui, G. Q.,Luo, Q.,Sun, Y.. 2014

[10]Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L. Merr.). Li, Wenbin,Sun, Desheng,Du, Yuping,Chen, Qingshan,Zhang, Zhongchen,Qiu, Lijuan,Sun, Genlou.

[11]A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. Fang, Xiaomei,Wang, Xiaoqin,Liu, Rui,Liu, Xueying,Li, Man,Huang, Mengzhu,Zhang, Zhengsheng,Dong, Kongjun,Liu, Tianpeng,He, Jihong,Ren, Ruiyu,Zhang, Lei,Yang, Tianyu. 2016

[12]QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Meng, Lijun,Zhao, Xiangqian,Ponce, Kimberly,Ye, Guoyou,Leung, Hei,Meng, Lijun.

[13]Effects of the Vrn-D1b allele associated with facultative growth habit on agronomic traits in common wheat. Meng, Ling-zhi,Liu, Hong-wei,Yang, Li,Li, Hong-jie,Zhang, Hong-jun,Zhou, Yang,Mai, Chun-yan,Yu, Li-qiang.

[14]The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L.. Xu, Mingyue,Ma, Haiqing,Zeng, Liu,Cheng, Yong,Lu, Guangyuan,Xu, Jinsong,Zhang, Xuekun,Zou, Xiling,Ma, Haiqing.

[15]Identification of interspecific heterotic loci associated with agronomic traits in rice introgression lines carrying genomic fragments of Oryza glaberrima. Nassirou, Tondi Yacouba,He, Wenchuang,Chen, Caijin,Nsabiyumva, Athanase,Dong, Xilong,Yin, Yilong,Rao, Quanqin,Zhou, Wei,Shi, Han,Zhao, Wubin,Jin, Deming,Nevame, Adedze Y. M..

[16]A genetic evidence of chromosomal fragment from bridge parent existing in substitution lines between two common wheat varieties. Zhao Pei,Wang Ke,Lin Zhi-shan,Liu Hui-yun,Li Xin,Du Li-pu,Ye Xing-guo,Yan Yue-ming.

[17]Amplified Fragment Length Polymorphism Markers and Agronomic Traits Analysis Provide Strategies for Improvement of Bitter Gourd (Momordica charantia L.). Yang, Yan,Zhan, Yuanfeng,Liu, Weixia,Sun, Jihua. 2010

[18]Whole-Genome Mapping Reveals Novel QTL Clusters Associated with Main Agronomic Traits of Cabbage (Brassica oleracea var. capitata L.). Lv, Honghao,Liu, Xing,Han, Fengqing,Fang, Zhiyuan,Yang, Limei,Zhuang, Mu,Liu, Yumei,Li, Zhansheng,Zhang, Yangyong,Wang, Qingbiao. 2016

[19]Characterization and comparison of three transgenic Artemisia annua varieties and wild-type variety in environmental release trial. Jiang, Lingxi,Liu, Hua,Wang, Jinbin,Tan, Furong,Zhao, Kai,Wu, Xiao,Zhu, Hong,Tang, Xueming,Jiang, Lingxi,Liu, Hua,Wang, Jinbin,Tan, Furong,Zhao, Kai,Wu, Xiao,Zhu, Hong,Tang, Xueming,Tang, Xueming,Tang, Kexuan. 2010

[20]Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.)Using SLAF-seq. Xie, Dongwei,Dai, Zhigang,Yang, Zemao,Tang, Qing,Su, Jianguang,Xie, Dongwei,Zhao, Debao,Yang, Xue,Zhang, Liguo,Sun, Jian. 2018

作者其他论文 更多>>