Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat

文献类型: 外文期刊

第一作者: Zhao, Chuanzhi

作者: Zhao, Chuanzhi;Lv, Xindi;Li, Yinghui;Li, Feng;Geng, Miaomiao;Mi, Yangyang;Ni, Zhongfu;Xie, Chaojie;Sun, Qixin;Zhao, Chuanzhi;Lv, Xindi;Li, Yinghui;Li, Feng;Geng, Miaomiao;Mi, Yangyang;Ni, Zhongfu;Xie, Chaojie;Sun, Qixin;Zhao, Chuanzhi

作者机构:

关键词: Wheat;Haynaldia villosa;NAM gene;Grain protein content;Pm21

期刊名称:BMC GENETICS ( 影响因子:2.797; 五年影响因子:3.263 )

ISSN: 1471-2156

年卷期: 2016 年 17 卷

页码:

收录情况: SCI

摘要: Background: The 6AL/6VS translocation lines, carrying the wheat powdery mildew resistance gene Pm21, are planted on more than 3.4 million hectares. The NAM-A1 gene, located on chromosome 6AS of hexaploid wheat, has been implicated with increased wheat grain protein content (GPC). However, the NAM-A1 gene was removed from the 6AL/6VS translocation lines after the original chromosome 6AS was replaced by chromosome 6VS of Haynaldia villosa. The present study aimed to clone the NAM homologous gene from chromosome 6VS, to analyze the changes of GPC in the 6AL/6VS translocation lines, and to develop related molecular markers for wheat molecular breeding. Results: A new NAM family gene, NAM-V1, was cloned from 6VS of H. villosa (GenBank ACC. no. KR873101). NAM-V1 contained an intact open reading frame (ORF) and putatively encodes a protein of 407 amino acids. Phylogenetic analysis indicated that NAM-V1 was an orthologous gene of NAM-A1, B1, and D1. The determination of GPC in four Pm21 F2 segregation populations demonstrated that the replacement of NAM-A1 by NAM-V1 confers increased GPC in hexaploid wheat. Multiple sequence alignment of NAM-A1, B1, B2, D1, D2, and V1 showed the single nucleotide polymorphism (SNP) sites for each of the NAM genes, allowing us to develop a molecular marker, CauNAM-V1, for the specific detection of NAM-V1 gene. Our results indicate that CauNAM-V1 can be used as a novel DNA marker for NAM-V1, and can also be used for selecting Pm21 in wheat breeding programs. Further, we developed a marker, CauNAM-ABD, for the amplification and simultaneously distinguish among the NAM-A1, NAM-B1, NAM-B2, NAM-D1, and NAM-D2 genes in a single step. CauNAM-ABD enabled us to develop an efficient "one-marker-for-five-genes" procedure for identifying genes and its copy numbers related with grain protein content. Conclusion: Here, we report the isolation of the NAM-V1 gene of H. villosa. This gene contributes to increasing GPC in 6AL/6VS translocation wheat lines. We developed a molecular marker for the specific detection of NAM-V1 and a molecular marker that can be used to simultaneously distinguished among the NAM-A1, NAM-B1, NAM-B2, NAM-D1, and NAM-D2 genes in a single step.

分类号:

  • 相关文献

[1]Transmission of 6VS chromosome in wheat-Haynaldia villosa translocation lines and genetic stability of Pm21 carried by 6VS. Tao, WJ,Liu, DJ,Chen, PD,Li, WL,Xiang, QJ,Duan, XY. 1999

[2]Introduction of multi-alien chromatins carrying different powdery mildew-resistant genes from rye and Haynaldia villosa into wheat genome. Yuan, WY,Tomita, M,Sun, SC,Yasumuro, Y.

[3]Wheat Grain Protein Content Estimation Based on Multi-temporal Remote Sensing Data and Generalized Regression Neural Network. Li, Cunjun,Wang, Qian,Wang, Jihua,Wang, Yan,Yang, Xiaodong,Song, Xiaoyu,Huang, Wenjiang. 2012

[4]Study on Predicting Protein Content of Wheat Seeds by Using Wheat Leaves SPAD Value. Gao Fei,Xiao Jing,Gu Yun-hong,Zhen, Jiao,Jin Qing-sheng. 2012

[5]Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. Wang, Lin,Cui, Fa,Jun, Li,Ding, Anming,Zhao, Chunhua,Li, Xingfeng,Feng, Deshun,Gao, Jurong,Wang, Honggang,Wang, Lin,Wang, Jinping,Cui, Fa,Zhao, Chunhua,Jun, Li,Ding, Anming.

[6]Estimating wheat grain protein content from ground-based hyperspectral data using an improved detecting method. Lu, YL,Li, SK,Xie, RZ,Gao, SJ,Wang, KR,Wang, G,Xiao, CH. 2005

[7]Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Kong, Lingan,Xie, Yan,Hu, Ling,Feng, Bo,Li, Shengdong.

[8]Molecular genetic analysis of grain protein content and flour whiteness degree using RILs in common wheat. Sun, Xianyin,Wu, Ke,Qian, Zhaoguo,Sun, Xianyin,Zhao, Yan,Kong, Fanmei,Guo, Ying,Li, Sishen,Wang, Yingying.

[9]Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Li, Guiping,Chen, Peidu,Zhang, Shouzhong,Wang, Xiue,He, Zhonghu,Zhang, Yan,Zhao, He,Huang, Huiyao,Zhou, Xiangchun. 2007

[10]Genetic Analysis and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene in Triticum aestivum-Haynaldia villosa Translocation Line V3. Hou Lu,Ma Dong-fang,Hu Mao-lin,Lu Yan,Jing Jin-xue,Hou Lu,He Miao-miao,Hu Mao-lin. 2013

[11]Establishment of 6VS Telocentric Lines of Haynaldia villosa Resistant to Powdery Mildew Induced by Immature Embryo Culture. Li, H,Chen, X,Xin, ZY,Xu, HJ,Du, LP,Ma, YZ.

[12]Microdissection of Haynaldia villosa Telosome 6VS and Cloning of Species-specific DNA Sequences. Kong, FJ,Chen, X,Ma, YZ,Xin, ZY,Li, LC,Zhang, ZY,Lin, ZS.

[13]Development and identification of wheat-Haynaldia villosa T6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Li, H,Chen, X,Xin, ZY,Ma, YZ,Xu, HJ,Chen, XY,Jia, X. 2005

[14]GENETIC ANALYSIS OF THE GRAIN PROTEIN CONTENT IN SOFT RED WINTER WHEAT (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Yang, Xueming,Zhou, Miaoping,Yang, Dan. 2014

[15]Estimation of Grain Protein Content in Winter Wheat by Using Three Methods with Hyperspectral Data. Xiu-liang Jin,Wang, Ji-hua,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Wang, Ji-hua,Guo, Wen-shan. 2014

[16]Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression. Li Cun-jun,Wang Ji-hua,Wang Qian,Wang Da-cheng,Song Xiao-yu,Wang Yan,Huang Wen-jiang,Li Cun-jun,Wang Ji-hua,Huang Wen-jiang. 2012

[17]The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars. Chen Xue-yan,Ji Wan-quan,Chen Xue-yan,Song Guo-qi,Zhang Shu-juan,Li Yu-lian,Gao Jie,Li Gen-ying,Shahidul, Islam,Ma Wu-jun,Shahidul, Islam,Ma Wu-jun. 2017

[18]Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Jin, Xiuliang. 2015

[19]EFFECTS OF REGULATED DEFICIT IRRIGATION ON GRAIN YIELD AND QUALITY TRAITS IN WINTER WHEAT. Meng, Zhaojiang,Duan, Aiwang,Gao, Yao,Wang, Xiaosen,Shen, Xiaojun,Dassanayake, Kithsiri Bandara,Chen, Deli.

[20]Genetic Variation of High Molecular Weight Glutenin Subunits in Wheat Accessions in China. Guo, Xiaomin,Li, Hongqin,Xiang, Jishan,Xu, Xin,Liu, Weihua,Gao, Ainong,Yang, Xinming,Li, Xiuquan,Li, Lihui,Wang, Ruihui.

作者其他论文 更多>>