Effects of five allelic variants of the wheat vernalization gene VRN-B1 on heading date and vernalization requirements

文献类型: 外文期刊

第一作者: Song, Tianqi

作者: Song, Tianqi;Fan, Qiru;Shi, Caiyin;Li, Siyi;Zhou, Jianfei;Bu, Yaning;Chang, Xiling;Yu, Yang;Lei, Xinpeng;Wang, Yuxin;Zhang, Xiaoke;Xiang, Jishan;Chen, Dongsheng;Xiang, Jishan

作者机构:

关键词: Wheat; Heading date; Vernalization requirements; VRN-B1; Allelic variation

期刊名称:MOLECULAR BREEDING ( 影响因子:3.0; 五年影响因子:3.0 )

ISSN: 1380-3743

年卷期: 2025 年 45 卷 4 期

页码:

收录情况: SCI

摘要: Winter wheat must undergo vernalization to flower, while spring wheat does not require vernalization. The requirement for vernalization in wheat is primarily controlled by vernalization genes. VRN-1 are the most important vernalization genes. The recessive vrn-1 alleles have a strict vernalization requirement, while dominant mutations in Vrn-1 eliminate or reduce this requirement. In this study, the near-isogenic lines for several VRN-B1 allelic variants (Vrn-B1a, Vrn-B1b, Vrn-B1c, Vrn-B1 d and vrn-B1) were generated in two winter wheat backgrounds. Under field conditions, the four dominant Vrn-B1 allelic variants (Vrn-B1a, Vrn-B1b, Vrn-B1c, and Vrn-B1 d) resulted in an advancement in the heading date by 3-5 days. Using an artificially controlled gradient vernalization treatment (4-5 degrees C, ranging from 0 to 45 days with 5-day intervals), the vernalization requirements of VRN-B1 allelic variants were analyzed. The relative effects on vernalization requirements were found to be vrn-B1 > Vrn-B1a = Vrn-B1 d > Vrn-B1b = Vrn-B1c (opposite to the heading date). Gene expression analysis indicates that the earlier heading associated with the dominant Vrn-B1 allelic variants is linked to their open expression under non-vernalization conditions. There may be an expression threshold at the VRN-B1 locus that eliminates the vernalization requirement, and this threshold should be lower than the vrn-B1 levels observed under saturated vernalization conditions. Furthermore, once this hypothesized threshold is reached, there appears to be no dosage effect on VRN-B1 expression. These results deepen our understanding of wheat vernalization genes and provide a theoretical basis for utilizing these genes in breeding programs aimed at improving wheat adaptability.

分类号:

  • 相关文献
作者其他论文 更多>>