Maize residues, soil quality, and wheat growth in China. A review

文献类型: 外文期刊

第一作者: Kong, Lingan

作者: Kong, Lingan

作者机构:

关键词: Maize (Zea mays L.);Reduced tillage;Residue retention;Soil quality;Wheat (Triticum aestivum L.)

期刊名称:AGRONOMY FOR SUSTAINABLE DEVELOPMENT ( 影响因子:5.832; 五年影响因子:9.354 )

ISSN: 1774-0746

年卷期: 2014 年 34 卷 2 期

页码:

收录情况: SCI

摘要: Crop residue retention is a key component of sustainable cropping systems. In recent years, retention of crop residue is a means of improving soil quality and nutrient capacity and reducing the adverse effects of residue burning. Maize-wheat rotation is a major double-cropping system practiced on more than one fifth of agricultural lands worldwide. Currently, more than 50 % of maize residues are retained immediately after harvesting. In China, this practice has beneficial effects on soil properties and productivity of the succeeding wheat crop. However, increasing the retention of maize residues without proper soil management has also led to a series of concerns, such as short-term nitrogen immobilization, rapid moisture loss, and high susceptibility to freezing during winter as a result of increased soil porosity. Therefore, other practices for maize residue retention are needed to promote wheat growth and the release of nutrients. This article reviews recent developments in China concerning the consequences of maize residue retention on the physical, chemical, and biological properties of soil quality and the growth, productivity, and quality of wheat. Major patterns of maize residue retention are discussed. In particular, this review provides three complementary approaches for maize residue management.

分类号:

  • 相关文献

[1]Potential Effect of Conservation Tillage on Sustainable Land Use: A Review of Global Long-Term Studies. Wang Xiao-Bin,Cai Dian-Xiong,Hoogmoed, W. B.,Oenema, O.,Perdok, U. D..

[2]Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Wang, Xiaobin,Dai, Kuai,Zhang, Dingchen,Zhang, Xiaoming,Wang, Yan,Zhao, Quansheng,Cai, Dianxiong,Wang, Xiaobin,Dai, Kuai,Zhang, Dingchen,Zhang, Xiaoming,Wang, Yan,Zhao, Quansheng,Cai, Dianxiong,Cai, Dianxiong,Hoogmoed, W. B.,Oenema, O.. 2011

[3]Tillage and crop residue effects on rainfed wheat and maize production in northern China. Wang, Xiaobin,Wu, Huijun,Dai, Kuai,Zhang, Dingchen,Feng, Zonghui,Zhao, Quansheng,Wu, Xueping,Jin, Ke,Cai, Dianxiong,Wang, Xiaobin,Wu, Huijun,Dai, Kuai,Zhang, Dingchen,Feng, Zonghui,Zhao, Quansheng,Wu, Xueping,Jin, Ke,Cai, Dianxiong,Cai, Dianxiong,Oenema, O.,Hoogmoed, W. B.. 2012

[4]Nitrous oxide and methane emissions from a Chinese wheat-rice cropping system under different tillage practices during the wheat-growing season. Zhang, Yuefang,Sheng, Jing,Wang, Zichen,Chen, Liugen,Zheng, Jianchu.

[5]Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Li, Xing-Pu,Lan, Su-Que,Liu, Yu-Ping,Gale, M. D.,Worland, T. J.. 2006

[6]Inheritance of stem strength and its correlations with culm morphological traits in wheat (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Zhang, Pingping,Ren, Lijuan,Yang, Xueming,Yao, Guocai,Zhang, Peng,Zhou, Miaoping. 2011

[7]Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.). Wang Shu-guang,Jia Shou-shan,Sun Dai-zhen,Fan Hua,Chang Xiao-ping,Jing Rui-lian. 2016

[8]Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat. Kong, Lingan,Sun, Mingze,Wang, Fahong,Liu, Jia,Feng, Bo,Si, Jisheng,Zhang, Bin,Li, Shengdong,Li, Huawei. 2014

[9]Relationship between yield, carbon isotope discrimination and stem carbohydrate concentration in spring wheat grown in Ningxia Irrigation Region (North-west China). Zhu, Lin,Xu, Xing,Zhu, Lin,Liang, Zong Suo,Zhu, Lin,Li, Shu Hua,Xu, Xing,Zhang, Zhan Feng. 2010

[10]Variation in Cadmium Tolerance and Accumulation and Their Relationship in Wheat Recombinant Inbred Lines at Seedling Stage. Jiang, Dong,Ci, Dunwei,Jiang, Dong,Dai, Tingbo,Jing, Qi,Cao, Weixing,Ci, Dunwei. 2011

[11]Factorial cross analysis of pre-harvest sprouting resistance in white wheat. Jiang, GL,Xiao, SH. 2005

[12]Evidences for the association between carbon isotope discrimination and grain yield-Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Zhu, Lin,Liang, Zong Suo,Xu, Xing,Zhu, Lin,Xu, Xing,Zhu, Lin,Li, Shu Hua,Monneveux, P.. 2009

[13]Length of internode and spike: how do they contribute to plant height of wheat at an individual QTL level?. Wang, L.,Cui, F.,Ding, A. M.,Li, J.,Zhao, C. H.,Li, X. F.,Feng, D. S.,Wang, H. G.,Wang, L.,Wang, J. P.,Cui, F.,Ding, A. M.,Li, J..

[14]Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Xin, Caiyun,Wang, Xiao,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Liu, Fulai,Xin, Caiyun.

[15]HapIII of TaSAP1-A1, a Positively Selected Haplotype in Wheat Breeding. Chang Jian-zhong,Hao Chen-yang,Chang Xiao-ping,Zhang Xue-yong,Jing Rui-lian. 2014

[16]Development of near-infrared reflectance spectroscopy models for quantitative determination of water-soluble carbohydrate content in wheat stem and glume. Wang, Zhenghang,Liu, Xiulin,Chang, Xiaoping,Jing, Ruilian,Wang, Zhenghang,Liu, Xiulin,Li, Runzhi.

[17]Double-stranded RNA in the biological control of grain aphid (Sitobion avenae F.). Wang, Dahai,Sun, Yongwei,Wang, Hui,Xia, Lanqin,Wang, Dahai,Liu, Qi,Li, Xia.

[18]Allelic Variation in Loci for Adaptive Response and Its Effect on Agronomical Traits in Chinese Wheat (Triticum aestivum L.). Gao Li-feng,Liu Pan,Gu Yan-chun,Jia Ji-zeng. 2014

[19]Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Hu, Mengyun,Zhang, Yingjun,Li, Hui,Shi, Zhigang,Zhang, Zhengbin.

[20]Transgene inheritance and quality improvement by expressing novel HMW glutenin subunit (HMW-GS) genes in winter wheat. Zhang, XD,Liang, RQ,Chen, XQ,Yang, FP,Zhang, LQ.

作者其他论文 更多>>