Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.

文献类型: 外文期刊

第一作者: Liu, Renzhong

作者: Liu, Renzhong;Wang, Baohua;Guo, Wangzhen;Qin, Yongsheng;Zhang, Yuanming;Zhang, Tianzhen;Liu, Renzhong;Wang, Liguo

作者机构:

关键词: Gossypium hirsutum;Genetic map;Recombinant inbred lines immortalized F2 population;Agronomic traits;QTL tagging

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN: 1380-3743

年卷期: 2012 年 29 卷 2 期

页码:

收录情况: SCI

摘要: Quantitative trait loci (QTL) mapping provides a powerful tool for unraveling the genetic basis of yield and yield components as well as heterosis in upland cotton. In this research, a molecular linkage map of Xiangzamian 2 (Gossypium hirsutum L.)-derived recombinant inbred lines (RILs) was reconstructed based on increased expressed sequence tag-simple sequence repeat markers. Both the RILs and immortalized F2s (IF2) developed through intermating between RILs were grown under multiple environments. Yield and yield components including seed-cotton yield, lint yield, bolls/plant, boll weight, lint percentage, seed index, lint index and fruit branch number were measured and their QTL were repeatedly identified across environments by the composite interval mapping (CIM) method. From a total of 111 non-redundant QTL, 23 were detected in both two populations. In the meantime, multi-marker joint analyses showed that 16 of these QTL had significant environmental interaction. QTL for correlated traits tended to be collocated and most of the QTL for seed-cotton yield and lint yield were associated with QTL for at least one yield component, consistent with the results observed in correlation analyses. For many QTL with significant additive effects, positive alleles from CRI12, the inferior parent with lower yield performance, were associated with trait improvement. Trait performance of IF2s and the large number of QTL with positive dominant effects implied that dominance plays an important role in the genetic basis of heterosis in Xiangzamian 2 and that non-additive inheritance is also an important genetic mode for lint percentage in the population. These QTL can provide the bases for marker-assisted breeding programs of upland cotton.

分类号:

  • 相关文献

[1]A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. Fang, Xiaomei,Wang, Xiaoqin,Liu, Rui,Liu, Xueying,Li, Man,Huang, Mengzhu,Zhang, Zhengsheng,Dong, Kongjun,Liu, Tianpeng,He, Jihong,Ren, Ruiyu,Zhang, Lei,Yang, Tianyu. 2016

[2]Genetic analysis of plant height using two immortalized populations of "CRI12 x J8891" in Gossypium hirsutum L.. Liu, Renzhong,Liu, Renzhong,Ai, Nijiang,Zhu, Xinxia,Liu, Fengju,Guo, Wangzhen,Zhang, Tianzhen.

[3]Single-Strand Conformational Polymorphism Markers Associated with a Major QTL for Fusarium Head Blight Resistance in Wheat. Yu, G. H.,Tang, K. X.,Ma, H. X.,Bai, G. H..

[4]Evaluation of agronomic and physiological traits associated with high temperature stress tolerance in the winter wheat cultivars. Cao, Xinyou,Cheng, Dungong,Wang, Canguo,Liu, Aifeng,Song, Jianming,Li, Haosheng,Zhao, Zhendong,Liu, Jianjun,Mondal, S.. 2015

[5]Developing a core collection of litchi (Litchi chinensis Sonn.) based on EST-SSR genotype data and agronomic traits. Sun, Qingming,Bai, Lijun,Xiang, Xu,Zhao, Junsheng,Ou, Liangxi,Ke, Lixiang. 2012

[6]Utilization of UPLC/Q-TOF-MS-Based Metabolomics and AFLP-Based Marker-Assisted Selection to Facilitate/Assist Conventional Breeding of Polygala tenuifolia. Li, Juan,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Qin, Xue-Mei,Zhang, Fu-Sheng,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Xu, Xiao-Shuang,Peng, Bing,Tian, Hong-Ling,Ma, Cun-Gen. 2017

[7]Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population. Zhang, H. M.,Hui, G. Q.,Luo, Q.,Liu, X. H.,Sun, Y.,Zhang, H. M.,Hui, G. Q.,Luo, Q.,Sun, Y.. 2014

[8]Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L. Merr.). Li, Wenbin,Sun, Desheng,Du, Yuping,Chen, Qingshan,Zhang, Zhongchen,Qiu, Lijuan,Sun, Genlou.

[9]QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Meng, Lijun,Zhao, Xiangqian,Ponce, Kimberly,Ye, Guoyou,Leung, Hei,Meng, Lijun.

[10]Effects of the Vrn-D1b allele associated with facultative growth habit on agronomic traits in common wheat. Meng, Ling-zhi,Liu, Hong-wei,Yang, Li,Li, Hong-jie,Zhang, Hong-jun,Zhou, Yang,Mai, Chun-yan,Yu, Li-qiang.

[11]The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L.. Xu, Mingyue,Ma, Haiqing,Zeng, Liu,Cheng, Yong,Lu, Guangyuan,Xu, Jinsong,Zhang, Xuekun,Zou, Xiling,Ma, Haiqing.

[12]Identification of interspecific heterotic loci associated with agronomic traits in rice introgression lines carrying genomic fragments of Oryza glaberrima. Nassirou, Tondi Yacouba,He, Wenchuang,Chen, Caijin,Nsabiyumva, Athanase,Dong, Xilong,Yin, Yilong,Rao, Quanqin,Zhou, Wei,Shi, Han,Zhao, Wubin,Jin, Deming,Nevame, Adedze Y. M..

[13]A genetic evidence of chromosomal fragment from bridge parent existing in substitution lines between two common wheat varieties. Zhao Pei,Wang Ke,Lin Zhi-shan,Liu Hui-yun,Li Xin,Du Li-pu,Ye Xing-guo,Yan Yue-ming.

[14]Amplified Fragment Length Polymorphism Markers and Agronomic Traits Analysis Provide Strategies for Improvement of Bitter Gourd (Momordica charantia L.). Yang, Yan,Zhan, Yuanfeng,Liu, Weixia,Sun, Jihua. 2010

[15]Whole-Genome Mapping Reveals Novel QTL Clusters Associated with Main Agronomic Traits of Cabbage (Brassica oleracea var. capitata L.). Lv, Honghao,Liu, Xing,Han, Fengqing,Fang, Zhiyuan,Yang, Limei,Zhuang, Mu,Liu, Yumei,Li, Zhansheng,Zhang, Yangyong,Wang, Qingbiao. 2016

[16]Characterization and comparison of three transgenic Artemisia annua varieties and wild-type variety in environmental release trial. Jiang, Lingxi,Liu, Hua,Wang, Jinbin,Tan, Furong,Zhao, Kai,Wu, Xiao,Zhu, Hong,Tang, Xueming,Jiang, Lingxi,Liu, Hua,Wang, Jinbin,Tan, Furong,Zhao, Kai,Wu, Xiao,Zhu, Hong,Tang, Xueming,Tang, Xueming,Tang, Kexuan. 2010

[17]Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.)Using SLAF-seq. Xie, Dongwei,Dai, Zhigang,Yang, Zemao,Tang, Qing,Su, Jianguang,Xie, Dongwei,Zhao, Debao,Yang, Xue,Zhang, Liguo,Sun, Jian. 2018

[18]Characterization of a Novel Chlorophyll-Deficient Mutant Mt6172 in Wheat. Guo Hui-jun,Liu Qing-chang,Guo Hui-jun,Zhao Hong-bing,Zhao Lin-shu,Gu Jia-yu,Zhao Shi-rong,Li Jun-hui,Liu Lu-xiang. 2012

[19]Recent progress on molecular breeding of rice in China. Rao, Yuchun,Li, Yuanyuan,Qian, Qian,Rao, Yuchun. 2014

[20]Post-flowering photoperiod effects on reproductive development and agronomic traits of long-day and short-day crops. Han, T,Wu, C,Mentreddy, RS,Zhao, J,Xu, X,Gai, J. 2005

作者其他论文 更多>>