Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference

文献类型: 外文期刊

第一作者: Ma, Jin

作者: Ma, Jin;Song, Yunzhi;Wu, Bin;Li, Kaidong;Zhu, Changxiang;Wen, Fujiang;Jiang, Mingsong

作者机构:

关键词: Rice stripe virus;CP gene;SP gene;RNA interference;Transgenic rice

期刊名称:TRANSGENIC RESEARCH ( 影响因子:2.788; 五年影响因子:2.377 )

ISSN: 0962-8819

年卷期: 2011 年 20 卷 6 期

页码:

收录情况: SCI

摘要: Rice stripe disease, with the pathogen Rice stripe virus (RSV), is one of the most widespread and severe virus diseases. Cultivating a resistant breed is an essential and efficient method in preventing rice stripe disease. Following RNA interference (RNAi) theory, we constructed three RNAi binary vectors based on coat protein (CP), special-disease protein (SP) and chimeric CP/SP gene sequence. Transgenic lines of rice cv. Yujing6 were generated through Agrobacterium-mediated transformation. We inoculated T1 generation plants from each line derived from CP/SP, CP, and SP transgenic rice plants with two RSV isolates from Shandong Province and Jiangsu Province using viruliferous vector insects. In these resistance assays, chimeric CP/SP RNAi lines showed stronger resistance against two isolates than CP or SP single RNAi lines. Stable integration and expression of RNAi transgenes were confirmed by Southern and northern blot analysis of independent transgenic lines. In the resistant transgenic lines, lower levels of transgene transcripts and specific short interference RNAs were observed relative to the susceptible transgenic plant, which showed that virus resistance was increased by RNAi. Genetic analysis demonstrated that transgene and virus resistance was stably inherited in the T2 progeny plants.

分类号:

  • 相关文献

[1]Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. Jiang, Yayuan,Sun, Lin,Li, Kaidong,Song, Yunzhi,Zhu, Changxiang,Jiang, Mingsong.

[2]Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Sun, Lin,Lin, Chao,Du, Jinwen,Song, Yunzhi,Liu, Hongmei,Zhou, Shumei,Wen, Fujiang,Zhu, Changxiang,Jiang, Mingsong.

[3]RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus. Fang, Ying,Lee, Seok Hee,Kim, Jong Hoon,Park, Dong Hwan,Park, Min Gu,Woo, Ra Mi,Lee, Bo Ram,Kim, Woo Jin,Je, Yeon Ho,Choi, Jae Young,Je, Yeon Ho,Li, Shuo. 2017

[4]Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Zhang, C.,Song, Y.,Jiang, F.,Jiang, Y.,Zhu, C.,Wen, F.,Li, G..

[5]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[6]Overexpression of OsCIPK30 Enhances Plant Tolerance to Rice stripe virus. Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun,Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun. 2017

[7]Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. Xu, Yi,Li, Chenyang,Wu, Jianxiang,Zhou, Xueping,Li, Chenyang,Zhou, Xueping,Li, Yi,Xu, Yi. 2018

[8]Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Xiong, Ruyi,Wu, Jianxiang,Zhou, Xueping,Zhou, Yijun. 2009

[9]Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Jiang, Shanshan,Jiang, Liangliang,Jiang, Shanshan,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei. 2018

[10]Arabidopsis is Susceptible to Rice stripe virus Infections. Sun, Feng,Yuan, Xia,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Yuan, Xia. 2011

[11]RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Sun, Feng,Fang, Peng,Li, Juan,Du, Linlin,Lan, Ying,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Fang, Peng,Shen, Wenbiao. 2016

[12]Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. Tong, Aizi,Yuan, Quan,Wang, Shu,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Tong, Aizi,Chen, Hairu,Yuan, Quan,Gong, Yifu,Wang, Shu. 2017

[13]Investigation on subcellular localization of Rice stripe virus in its vector small brown planthopper by electron microscopy. Deng, Jinhua,Li, Shuo,Ji, Yinghua,Zhou, Yijun,Deng, Jinhua,Hong, Jian. 2013

[14]Transcription of ORFs on RNA2 and RNA4 of Rice stripe virus terminate at an AUCCGGAU sequence that is conserved in the genus Tenuivirus. Wu, Gentu,Wu, Gentu,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Yan, Fei,Chen, Jianping.

[15]Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Jiang, Shanshan,Li, Kunfeng,Lin, Lin,Zheng, Hongying,Chen, Jianping,Jiang, Shanshan,Lu, Yuwen,Li, Kunfeng,Yan, Fei,Chen, Jianping.

[16]Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper. Hao, Zhongna,Wang, Lianping,He, Yueping,Liang, Jiangen,Tao, Rongxiang.

[17]The Cap Snatching of Segmented Negative Sense RNA Viruses as a Tool to Map the Transcription Start Sites of Heterologous Co-infecting Viruses. Lin, Wenzhong,Qiu, Ping,Jin, Jing,Liu, Shunmin,Ul Islam, Saif,Zhang, Jie,Du, Zhenguo,Wu, Zujian,Yang, Jinguang,Kormelink, Richard,Du, Zhenguo,Wu, Zujian. 2017

[18]Detection and fine mapping of two quantitative trait loci for partial resistance to stripe virus in rice (Oryza sativa L.). Zhang, Ying-Xin,Wang, Qi,Jiang, Ling,Wang, Bao-Xiang,Liu, Ling-Long,Shen, Ying-Yue,Cheng, Xia-Nian,Wan, Jian-Min,Wan, Jian-Min.

[19]Bacterial microbiota in small brown planthopper populations with different rice viruses. Li, Shuo,Zhou, Changwei,Chen, Guangyi,Zhou, Yijun. 2017

[20]Analysis of rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Li, S.,Li, X.,Sun, L.,Zhou, Y.,Li, S.,Sun, L.. 2012

作者其他论文 更多>>