Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture

文献类型: 外文期刊

第一作者: Zhang, Jie

作者: Zhang, Jie;Li, Yan;Xu, Hai-Peng;Zhao, Bao-Feng;Chen, Lei;Zhang, Xiao-Dong;Zhang, Jie;Fang, Xu;Zhu, Xiao-Ling

作者机构:

关键词: Biodiesel;Microbial lipids;Cryptococcus curvatus O3;Fed-batch culture;Stearic acid;Oleic acid

期刊名称:BIOMASS & BIOENERGY ( 影响因子:5.061; 五年影响因子:4.815 )

ISSN: 0961-9534

年卷期: 2011 年 35 卷 5 期

页码:

收录情况: SCI

摘要: This study investigates the capability of the oleaginous yeast Cryptococcus curvatus O3 to synthesize microbial lipids using glucose as its sole carbon source. Both glucose concentration and varying nitrogen sources have a significant effect on cell growth and microbial lipid accumulation in batch and fed-batch cultures. When cultivated in a shaking flask at 30 degrees C with glucose as sole carbon source, the cellular biomass and lipid content reached 51.8 kg m(-3) and 651 g kg(-1), respectively. The fed-batch culture in a 30 x 10(-3) m(3) stirred-tank fermentor run for 185 h produced a cellular biomass, lipid content, and lipid productivity rate of up to 104.1 kg m(-3), 827 g kg(-1), and 0.47 kg m(-3) h(-1), respectively. These data indicate that C. curvatus O3 can be used as an ideal oleaginous yeast for microbial lipid production. Gas chromatography analysis of the synthesized microbial lipids revealed that the major constituents are long-chain fatty acids, such as palmitic acid, stearic acid, oleic acid, and linoleic acid. The results suggest that the microbial lipids produced by C. curvatus O3 can be used to produce biodiesel. (C) 2011 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells. Wang, Songbo,Xiang, Nana,Yang, Liusong,Zhu, Canjun,Zhu, Xiaotong,Wang, Lina,Gao, Ping,Xi, Qianyun,Zhang, Yongliang,Shu, Gang,Jiang, Qingyan,Wang, Songbo,Xiang, Nana,Yang, Liusong,Zhu, Canjun,Zhu, Xiaotong,Wang, Lina,Gao, Ping,Xi, Qianyun,Zhang, Yongliang,Shu, Gang,Jiang, Qingyan,Wang, Songbo,Xiang, Nana,Yang, Liusong,Zhu, Canjun,Zhu, Xiaotong,Wang, Lina,Gao, Ping,Xi, Qianyun,Zhang, Yongliang,Shu, Gang,Jiang, Qingyan,Wang, Songbo,Xiang, Nana,Yang, Liusong,Zhu, Canjun,Zhu, Xiaotong,Wang, Lina,Gao, Ping,Xi, Qianyun,Zhang, Yongliang,Shu, Gang,Jiang, Qingyan.

[2]Improvement of ATP regeneration efficiency and operation stability in porcine interferon-alpha production by Pichia pastoris under lower induction temperature. Gao, Minjie,Wu, Jianrong,Zheng, Zhiyong,Shi, Zhongping,Zhan, Xiaobei,Dong, Shijuan,Yu, Ruisong. 2011

[3]Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-alpha production with an on-line model-based glycerol feeding strategy. Gao, Min-Jie,Zheng, Zhi-Yong,Wu, Jian-Rong,Jin, Hu,Zhan, Xiao-Bei,Lin, Chi-Chung,Dong, Shi-Juan,Li, Zhen. 2012

[4]Effective and stable porcine interferon-alpha production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis. Jin, Hu,Gao, Mingjie,Duan, Zuoying,Zheng, Zhiyong,Shi, Zhongping,Yu, Ruisong,Dong, Shijuan,Zhu, Yumin,Li, Zhen. 2010

[5]Enhancing pIFN-alpha Production and Process Stability in Fed-Batch Culture of Pichia pastoris by Controlling the Methanol Concentration and Monitoring the Responses of OUR/DO Levels. Gao, Min-Jie,Zhan, Xiao-Bei,Zheng, Zhi-Yong,Wu, Jian-Rong,Shi, Zhong-Ping,Lin, Chi-Chung,Dong, Shi-Juan,Li, Zhen. 2013

[6]Improving Performance and Operational Stability of Porcine Interferon-alpha Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding. Gao, Min-Jie,Zhan, Xiao-Bei,Gao, Peng,Zhang, Xu,Shi, Zhong-Ping,Lin, Chi-Chung,Dong, Shi-Juan,Li, Zhen.

[7]Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Yang, Cheng,Jiang, Peixia,Xiao, Su,Zhang, Chong,Xing, Xin-Hui,Lou, Kai.

[8]Screening and Identification of Differentially Expressed Genes in Goose Hepatocytes Exposed to Free Fatty Acid. Pan, Zhixiong,Wang, Jiwen,Kang, Bo,Han, Chunchun,Tang, Hui,Li, Liang,Xu, Feng,Zhou, Zehui,Lv, Jia,Lu, Lizhi. 2010

[9]Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Guo, Baozhu,Pandey, Manish K.,Khera, Pawan,Varshney, Rajeev K.,Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Culbreath, Albert K.,Guo, Baozhu,Wang, Ming Li,Tonnis, Brandon,Barkley, Noelle A.,Qiao, Lixian,Feng, Suping,Wang, Hui,Wang, Jianping,Holbrook, C. Corley. 2014

[10]Cs-substituted H3PW12O40 on Palygorskite Clay for Esterification of Oleic Acid with Ethanol. Zhang, L. X.,Jin, Q. Z.,Shan, L.,Liu, Y. F.,Huang, J. H.,Wang, X. G.,Zhang, L. X.. 2012

[11]Comparison of the Delta(12) fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. Yu, Shanlin,Pan, Lijuan,Zhang, Hongsheng,Pan, Lijuan,Yang, Qingli,Min, Ping,Ren, Zengkai. 2008

[12]A novel Ganoderma lucidum G0119 fermentation strategy for enhanced triterpenes production by statistical process optimization and addition of oleic acid. Feng, Jie,Zhang, Jing-Song,Feng, Na,Yan, Meng-Qiu,Yang, Yan,Jia, Wei,Lin, Chi-Chung,Feng, Jie,Zhang, Jing-Song,Feng, Na,Yan, Meng-Qiu,Yang, Yan,Jia, Wei,Lin, Chi-Chung,Feng, Jie,Zhang, Jing-Song,Feng, Na,Yan, Meng-Qiu,Yang, Yan,Jia, Wei,Lin, Chi-Chung.

[13]Synthesis and Characterization of Superparamagnetic Fe3O4 Nanoparticles Modified with Oleic Acid. Wang, Fei,Yin, Chan,Wei, Xiaoyi,Wang, Qinghuang,Cui, Lihong,Wang, Yihong,Li, Te,Li, Jihua,Wang, Qinghuang,Li, Jihua,Wang, Yihong. 2014

[14]Semi-rational engineering of cytochrome CYP153A from Marinobacter aquaeolei for improved omega-hydroxylation activity towards oleic acid. Duan, Yan,Ba, Lina,Gao, Jianwei,Gao, Xianxing,Lin, Zhanglin,Ba, Lina,Zhu, Dunming,de Jong, Rene M.,Mink, Daniel,Kaluzna, Iwona.

[15]The Synthesis of Methyl Oleate Catalyzed by Phosphotungstic Acid Immobilized on the Functionalized Palygorskite. Zhang, L. X.,Jin, Q. Z.,Huang, J. H.,Liu, Y. F.,Shan, L.,Wang, X. G.,Zhang, L. X.. 2012

[16]RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Shi, Jianghua,Lang, Chunxiu,Wu, Xuelong,Liu, Renhu,Zheng, Tao,Chen, Jinqing,Wu, Guanting,Zhang, Dongqing.

[17]Analysis of genetic and genotype x environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content of Brassica napus L.. Zhang, HZ,Shi, CH,Wu, JG,Ren, YL,Li, CT,Zhang, DQ,Zhang, YF.

[18]Effects of Different Oils on the Fatty Acid Profiles of Culture Medium and Ruminal Microorganisms in vitro. Wang, M. Z.,Wang, H. R.,Yu, L. H.,Bu, D. P.,Wang, J. Q.. 2012

[19]Expression pattern of L-FABP gene in different tissues and its regulation of fat metabolism-related genes in duck. He, Jun,Tian, Yong,Li, Jinjun,Shen, Junda,Tao, Zhengrong,Lu, Lizhi,He, Jun,Fu, Yan,Niu, Dong.

[20]Chemical composition of diaspores of the myrmecochorous plant Stemona tuberosa Lour. Chen, Gao,Sun, Wei-Bang,Chen, Gao,Sun, Wei-Bang,Huang, Sheng-Zhuo,Chen, Si-Chong,Chen, Yu-Han,Liu, Xu.

作者其他论文 更多>>