Accumulation and Gene Expression of Anthocyanin in Storage Roots of Purple-Freshed Sweet Potato [Ipomoea batatas (L.) Lam] Under Weak Light Conditions

文献类型: 外文期刊

第一作者: Hou Fu-yun

作者: Hou Fu-yun;Wang Qing-mei;Dong Shun-xu;Li Ai-xian;Zhang Hai-yan;Xie Bei-tao;Zhang Li-ming

作者机构:

关键词: anthocynin;sweet potato;storage root;weak light

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2010 年 9 卷 11 期

页码:

收录情况: SCI

摘要: Anthocyanidin in plants, an important pigment, is of great interest to researchers, consumers, and commercial entities due to its physiological functions. Anthocyanin content and mRNA levels of anthocynin biosynthesis genes were investigated in storage root of different purple-fleshed sweet potatoes (PFSP) genotypes to understand the regulation mechanism of anthocyanin under weak light conditions. Anthocyanin content, its amount of accumulation, and the expression of CHS, DFR, F3H, GT, and ANS genes in the PFSP storage root under weak light conditions were studied. The results demonstrated that the anthocyanin content of the treatments was decreased and was obviously lower than that of the control until 30 days after shading in Ayamurasaki, while it was lower than that of the control from the beginning of shading in Jishu 18. Their accumulation rates of both treatmeants were lower than its control before 10-20 d of shading in Jishu 18, while those of Ayamurasaki weren't in their treatments. This indicated that Jishu18 is more sensitive to light as compared to Ayamuraska. Under the different weak light conditions, mRNA levels for ibCHS, ibF3H, ibDFR, and ibANS were obviously decreased, while the expression of ibGT was increased. These results indicated that anthocyanin content was regulated by light at the mRNA levels and the enzymatic level in sweet potato. Therefore, the development dynamic response to anthocyanin content varied in different genotypes of PFSP, and mRNA levels of anthocyanin biosynthesis were inhibited under the weak light condition.

分类号:

  • 相关文献

[1]Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development. Guo, D.,Li, H. L.,Tang, X.,Peng, S. Q.,Tang, X.. 2014

[2]Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Wang, Ji Dong,Wang, Ji Dong,Wang, Huoyan,Zhou, Jianmin,Chen, Xiaoqin,Wang, Ji Dong,Zhang, Yunchun.

[3]Composition and Physicochemical Properties of Dietary Fiber Extracted from Residues of 10 Varieties of Sweet Potato by a Sieving Method. Mei, Xin,Mu, Tai-Hua,Han, Jun-Juan.

[4]The Amino Acid Composition, Solubility And Emulsifying Properties Of Sweet Potato Protein. Mu, Tai-Hua,Tan, Sze-Sze,Xue, You-Lin.

[5]Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato (Ipomoea batatas L.). Wang, Ji Dong,Hou, Pengfu,Dong, Yue,Hui, Zhang,Ma, Hongbo,Xu, Xian Ju,Nin, Yunwang,Ai, Yuchun,Zhang, Yongchun,Zhu, Guo Peng.

[6]Chemotaxis of Ditylenchus destructor in response to different inorganic ions. Qi, Yonghong,Li, Xinhua,Ma, Juan,Chen, Shulong,Qi, Yonghong,Li, Minquan.

[7]Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L). Lam.) in Northern China. Hou, Fuyun,Zhang, Liming,Xie, Beitao,Dong, Shunxu,Zhang, Haiyan,Li, Aixian,Wang, Qingmei.

[8]Expression of Arabidopsis HOMEODOMAIN GLABROUS 11 Enhances Tolerance to Drought Stress in Transgenic Sweet Potato Plants. Ruan, Long,Chen, Yihong,Zhang, Wei,Gao, Zhengliang,Chen, Lijuan,He, Jinling,Zhang, Yunhua.

[9]De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma, Peiyong,Bian, Xiaofeng,Jia, Zhaodong,Guo, Xiaoding,Xie, Yizhi.

[10]Differences in transport of photosynthates between high-and low-yielding Ipomoea batatas L. varieties. Liu, H. J.,Shi, C. Y.,Wang, C. J.,Ren, G. B.,Jiang, Y.,Si, C. C.,Chai, S. S..

[11]Leaf Spot on Sweet Potato (Ipomoea batatas) Caused by Stemphylium solani, a New Disease in China. Chai, A-Li,Du, Gong-Fu,Shi, Yan-Xia,Xie, Xue-Wen,Li, Bao-Ju.

[12]Constructing modern industrial chain of sweet potato to develop sweet potato industry. Shen, Xueshan,Wang, Hong,Huang, Gang. 2011

[13]Calf Thymus DNA-Binding Ability Study of Anthocyanins from Purple Sweet Potatoes (Ipomoea batatas L.). Wang, Dan,Wang, Xirui,Zhang, Chao,Ma, Yue,Zhao, Xiaoyan,Wang, Xirui. 2011

[14]Suppression of reproductive characteristics of the invasive plant Mikania micrantha by sweet potato competition. Shen, Shicai,Xu, Gaofeng,Jin, Guimei,Liu, Shufang,Yang, Yanxian,Chen, Aidong,Zhang, Fudou,Clements, David Roy,Kato-Noguchi, Hisashi. 2016

[15]Effects of potassium fertilizer application on photosynthesis and seedling growth of sweet potato under drought stress. Zhu, L. D.,Shao, X. H.,Hou, M. M.,Zhu, L. D.,Shao, X. H.,Hou, M. M.,Zhu, L. D.,Zhang, Y. C.,Zhang, H.,Zhang, H.. 2012

[16]Changes in Volatile Compounds of Sweet Potato Tips During Fermentation. Cui Li,Liu Chun-quan,Li Da-jing,Cui Li,Liu Chun-quan,Li Da-jing. 2010

[17]Soil nutrient loss due to tuber crop harvesting and its environmental impact in the North China Plain. Yu Han-qing,Li Yong,Zhou Na,Li Xiao-yu,Chappell, Adrian,Poesen, Jean. 2016

[18]Hydrogen Sulfide Promotes Root Organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Zhang, Hua,Wang, Yun,Yu, Wei,Peng, Wei-Yan,Fang, Fang,Wei, Zhao-Jun,Hu, Lan-Ying,Tang, Jun,Ma, Dai-Fu,Liu, Xiao-Ping. 2009

[19]Recovery of sporamin from naturally fermented sweet potato starch slurry by foam fractionation. Li, Peng-Gao,Mu, Tai-Hua,Li, Peng-Gao. 2012

[20]Nutritional assessment and effects of heat processing on digestibility of Chinese sweet potato protein. Sun, Minjie,Mu, Taihua,Zhang, Miao,Arogundade, Lawrence A.. 2012

作者其他论文 更多>>