Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum

文献类型: 外文期刊

第一作者: Li Li-bin

作者: Li Li-bin;Gao Jian-wei;Zhang Yi-rong;Liu Kai-chang;Ni Zhong-fu;Sun Qi-xin

作者机构:

关键词: Sorghum biocolor;SnRK2;CIPK;phylogeny;protein motif

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2010 年 9 卷 1 期

页码:

收录情况: SCI

摘要: Through bioinformatic data mining, 10 SnRK2 and 31 CIPK genes were identified from sorghum genome. They are unevenly distributed in the sorghum chromosomes. Most SnRK2 genes have 8 introns, while the CIPK genes have a few (no intron or less than 3 introns) or more than 10 introns. Phylogenetic analysis revealed that SnRK2 genes belong to one cluster and CIPK genes form the other independent cluster. The sorghum SnRK2s are subgrouped into three parts, and CIPK into five parts. More than half SnRK2 and CIPK genes present in homologous pairs, suggesting gene duplication may be due to the amplification of SnRK family genes. The kinase domains of SnRK2 family are highly conserved with 88.40% identity, but those of the CIPK family are less conserved with 63.72% identity. And the identity of sorghum CBL-interacting NAF domains of CIPKs is 61.66%. What's more, regarding to the sorghum SnRK2 and CIPK kinases, they are characterized with distinct motifs and their subcellular localization is not necessarily the same, which suggests they may be divergent in functions. Due to less conserved sequences, complex subcellular localization, and more family members, sorghum CIPK genes may play more flexible and multiple biological functions. According to the phylogenetic analysis of SnRK genes and SnRK functional studies in other plants, it is speculated that sorghum SnRK2 and CIPK genes may play important roles in stress response, growth and development.

分类号:

  • 相关文献

[1]Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Genes in Basal Angiosperm Amborella trichopoda. Liu, Ping-Li,Mao, Jian-Feng,Liu, Hui,Gao, Shu-Min,Shi, Peng-Hao,Gong, Jun-Qing,Xie, Lu-Lu,Li, Peng-Wei. 2016

[2]Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Sun, Bo,Niu, Jun-Qi,Tan, Qin-Liang,Li, Jian,Yang, Li-Tao,Li, Yang-Rui,Yang, Li-Tao,Li, Yang-Rui.

[3]Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis. Zhang Fan,Wang Jian-Hua,Zhang Fan,Chen Xun-Ji,Zheng Jun,Chen Xun-Ji. 2015

[4]Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry. Shen, Xinjie,Zhao, Wei,Shen, Xinjie,Guo, Xiao,Zhao, Di,Wang, Yantao,Peng, Xiang,Wei, Yan,Zhai, Zefeng,Li, Tianhong,Zhang, Qiang,Jiang, Yuzhuang,Li, Tianhong. 2017

[5]Molecular evolution, characterization, and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp chinensis). Huang, Zhinan,Tang, Jun,Duan, Weike,Wang, Zhen,Song, Xiaoming,Hou, Xilin,Tang, Jun. 2015

[6]HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Li, Ruifen,Zhang, Junwen,Wu, Guangyu,Wang, Hongzhi,Chen, Yajuan,Wei, Jianhua. 2012

[7]Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress. Li, Ruifen,Zhang, Junwen,Wei, Jianhua,Wang, Hongzhi,Wang, Yanzhen,Ma, Rongcai,Zhang, Junwen. 2009

[8]ZmCIPK21, A Maize CBL-Interacting Kinase, Enhances Salt Stress Tolerance in Arabidopsis thaliana. Chen, Xunji,Zhang, Fan,Wang, Bo,Wang, Jianhua,Chen, Xunji,Zhang, Fan,Wang, Bo,Zheng, Jun,Chen, Xunji,Huang, Quansheng. 2014

[9]Foxtail Millet CBL4 (SiCBL4) Interacts with SiCIPK24, Modulates Plant Salt Stress Tolerance. Zhang, Yumin,Linghu, Jingjing,Wang, Dong,Liu, Xi,Li, Fengting,Zhao, Tianyong,Zhang, Yumin,Linghu, Jingjing,Wang, Dong,Liu, Xi,Li, Fengting,Zhao, Tianyong,Zhang, Yumin,Linghu, Jingjing,Wang, Dong,Liu, Xi,Li, Fengting,Zhao, Tianyong,Yu, Aili,Zhao, Jinfeng. 2017

[10]Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Behd) and Co-expressin Analysis Related to Salt and Osmotic Stress Responses. Tang, Jun,Lin, Jing,Chang, Youhong,Tang, Jun,Cheng, Zong-Ming. 2016

[11]Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Mao, Jingjing,Manik, S. M. Nuruzzaman,Shi, Sujuan,Chao, Jiangtao,Wang, Qian,Liu, Haobao,Shi, Sujuan,Jin, Yirong. 2016

[12]Cloning and characterization of a novel CBL-interacting protein kinase from maize. Zheng, Jun,Wang, Guoying,Zheng, Jun,Wang, Guoying,Zhao, Jinfeng,Zhao, Jinfeng,Sun, Zhenfei,Guo, Xiying,Dong, Zhigang,Huai, Junling,Gou, Mingyue,He, Junguang,Jin, Yongsheng,Wang, Jianhua,Zhao, Jinfeng,Sun, Zhenfei,Guo, Xiying,Dong, Zhigang,Huai, Junling,Gou, Mingyue,He, Junguang,Jin, Yongsheng,Wang, Jianhua.

[13]Fungal Biodiversity Profiles 21-30. Buyck, Bart,Duhem, Bernard,Hofstetter, Valerie,Das, Kanad,Parihar, Arvind,Jayawardena, Ruvishika S.,Niveiro, Nicolas,Michlig, Andrea,Fabian Popoff, Orlando,Andrea Ramirez, Natalia,Niveiro, Nicolas,Michlig, Andrea,Fabian Popoff, Orlando,Andrea Ramirez, Natalia,Lewish, David P.,Pereira, Olinto L.,da Silva, Meiriele,Prasher, Indu B.,Verma, Rajnish K.,Adhikari, Sinchan,Omar Alberto, Edgardo,Bulgakov, Timur S.,Castareda-Ruiz, Rafael F.,Hembrom, Manoj E.,Hyde, Kevin D.,Hyde, Kevin D.,Buyck, Bart,Nuytinck, Jorinde.

[14]Analyses of the NAC Transcription Factor Gene Family in Gossypium raimondii Ulbr.: Chromosomal Location, Structure, Phylogeny, and Expression Patterns. Haihong Shang ,Wei Li,Changsong Zou,Youlu Yuan. 2013

[15]Diversity of Penicillium species isolated from heavy metal polluted soil in Guizhou Province, China. Zhou, Qing-Xin,Wang, Yong,Houbraken, Jos,Li, Qi-Rui,Xu, Ying,Hyde, Kevin D.,Hyde, Kevin D.,Mckenzie, Eric H. C.,Wang, Yong,Wang, Yong.

[16]Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development. Haihong Shang,Zhongna Wang,Changsong Zou,Zhen Zhang,Weijie Li,Junwen Li,Yuzhen Shi,Wankui Gong,Tingting Chen,Aiying Liu,Juwu Gong,Qun Ge,Youlu Yuan. 2016

[17]Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development. Weijie Li,Haihong Shang,Qun Ge,Changsong Zou,Juan Cai,Daojie Wang,Senmiao Fan,Zhen Zhang,Xiaoying Deng,Yunna Tan,Weiwu Song,Pengtao Li,Palanga Kibalou Koffi,Muhammad Jamshed,Quanwei Lu,Wankui Gong,Junwen Li,Yuzhen Shi,Tingting Chen,Juwu Gong,Aiying Liu,Youlu Yuan. 2016

[18]Additions to the genus Rhytidhysteron in Hysteriaceae. Thambugala, Kasun M.,Liu, Zuo-Yi,Thambugala, Kasun M.,Hyde, Kevin D.,Thambugala, Kasun M.,Hyde, Kevin D.,Eungwanichayapant, Prapassorn D.,Hyde, Kevin D.,Romero, Andrea I..

[19]Taxonomic and phylogenetic placement of Phaeodimeriella (Pseudoperisporiaceae, Pleosporales). Mapook, Ausana,Hyde, Kevin D.,Mapook, Ausana,Hyde, Kevin D.,Mapook, Ausana,Boonmee, Saranyaphat,Hyde, Kevin D.,Mapook, Ausana,Liu, Jian-Kui,Jones, E. B. Gareth,Bahkali, Ali H.,Hyde, Kevin D..

[20]Ranking higher taxa using divergence times: a case study in Dothideomycetes. Liu, Jian-Kui,Zhao, Qi,Liu, Jian-Kui,Liu, Jian-Kui,Liu, Zuo-Yi,Hyde, Kevin D.,Jeewon, Rajesh,Phillips, Alan J. L.,Maharachchikumbura, Sajeewa S. N.,Ryberg, Martin.

作者其他论文 更多>>