RabbitKSSD: accelerating genome distance estimation on modern multi-core architectures

文献类型: 外文期刊

第一作者: Xu, Xiaoming

作者: Xu, Xiaoming;Yin, Zekun;Yan, Lifeng;Wang, Hua;Liu, Weiguo;Yi, Huiguang;Schmidt, Bertil

作者机构:

期刊名称:BIOINFORMATICS ( 影响因子:5.8; 五年影响因子:8.3 )

ISSN: 1367-4803

年卷期: 2023 年 39 卷 11 期

页码:

收录情况: SCI

摘要: We propose RabbitKSSD, a high-speed genome distance estimation tool. Specifically, we leverage load-balanced task partitioning, fast I/O, efficient intermediate result accesses, and high-performance data structures to improve overall efficiency. Our performance evaluation demonstrates that RabbitKSSD achieves speedups ranging from 5.7 x to 19.8 x over Kssd for the time-consuming sketch generation and distance computation on commonly used workstations. In addition, it significantly outperforms Mash, BinDash, and Dashing2. Moreover, RabbitKSSD can efficiently perform all-vs-all distance computation for all RefSeq complete bacterial genomes (455 GB in FASTA format) in just 2 min on a 64-core workstation.

分类号:

  • 相关文献
作者其他论文 更多>>