Environmental pH and ionic strength influence the electron-transfer capacity of dissolved organic matter

文献类型: 外文期刊

第一作者: Lu, Qin

作者: Lu, Qin;Yuan, Yong;Tao, Ya;Tang, Jia

作者机构:

关键词: Chronoamperometry;Cyclic voltammetry;Dissolved organic matter;Electron-transfer capacity;Fluorescence spectroscopy;Gel-permeation chromatography

期刊名称:JOURNAL OF SOILS AND SEDIMENTS ( 影响因子:3.308; 五年影响因子:3.586 )

ISSN: 1439-0108

年卷期: 2015 年 15 卷 11 期

页码:

收录情况: SCI

摘要: Dissolved organic matter (DOM) plays an important role in the cycling of elements and the transformation of pollutants in the environment due to its electron-transfer capacity (ETC), but ETC may be affected by environmental factors such as pH and ionic strength. This study was aimed to reveal the effects of pH and ionic strength on the ETC of DOM and the possible mechanisms. DOM was prepared into solutions with various pH values (4, 6, 7, 8, and 10) and ionic strength (0.001, 0.01, 0.1, and 0.5 mol/L KCl). ETC of DOM including electron-accepting capacity (EAC) and electron-donating capacity (EDC) was determined with chronoamperometry. Spectroscopic and chromatographic properties of DOM were evaluated to obtain related structural information to explore the possible mechanisms for the ETC changes. Both the EAC and EDC of DOM increased consistently with increasing pH from 4 to 10. EAC and EDC increased with increasing ionic strength, peaked at 0.1 mol/L KCl, and then decreased. Gel permeation chromatogram displayed different molecular size distribution for the DOM in solution with different pH and ionic strength. Environmental pH and ionic strength influence the ETC of DOM by altering the conformation of DOM molecules.

分类号:

  • 相关文献

[1]Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. Jiang, Tao,Chen, Xueshuang,Wang, Dingyong,Liang, Jian,Bai, Weiyang,Zhang, Cheng,Wang, Qilei,Wei, Shiqiang,Jiang, Tao,Jiang, Tao,Chen, Xueshuang,Liang, Jian,Wang, Qilei,Bai, Weiyang,Liang, Jian. 2018

[2]Calf Thymus DNA-Binding Ability Study of Anthocyanins from Purple Sweet Potatoes (Ipomoea batatas L.). Wang, Dan,Wang, Xirui,Zhang, Chao,Ma, Yue,Zhao, Xiaoyan,Wang, Xirui. 2011

[3]Molecular Structure-Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method. Tang, Xiaosheng,Tang, Xiaosheng,Tang, Xiaosheng,Tang, Ping,Liu, Liangliang,Tang, Ping.

[4]Probing the interaction between 3 flavonoids and pancreatic lipase by methods of fluorescence spectroscopy and enzymatic kinetics. Li, Yan-Qin,Yang, Peng,Gao, Fei,Zhang, Zong-Wen,Wu, Bin. 2011

[5]An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Liu, Na,Tan, Yanglan,Wang, Hui,Wu, Aibo,Nie, Dongxia,Zhao, Zhiyong,Liao, Yucai,Sun, Changpo.

[6]Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Wang, Peilong,Wang, Ruiguo,Su, Xiaoou,Yang, Fei,Shi, Lei,Zhou, Ying,He, Yujian,Yao, Dongsheng.

[7]An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao,Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao. 2017

[8]Effects of the Fe-II/Cu-II Interaction on Copper Aging Enhancement and Pentachlorophenol Reductive Transformation in Paddy Soil. Wang, Yong-kui,Tao, Liang,Chen, Man-jia,Li, Fang-bai,Wang, Yong-kui,Chen, Man-jia,Wang, Yong-kui,Chen, Man-jia. 2012

[9]Reductive transformation of 2-nitrophenol by Fe(II) species in gamma-aluminum oxide suspension. Tao, Liang,Li, Fangbai,Sun, Kewen,Tao, Liang,Sun, Kewen,Feng, Chunhua,Tao, Liang,Sun, Kewen. 2009

[10]Electrochemical evidence of Fe(II)/Cu(II) interaction on titanium oxide for 2-nitrophenol reductive transformation. Tao, Liang,Li, Fangbai. 2012

[11]REDUCTIVE ACTIVITY OF ADSORBED Fe(II) ON IRON (OXYHYDR)OXIDES FOR 2-NITROPHENOL TRANSFORMATION. Tao, Liang,Li, Fangbai,Wang, Yongkui,Tao, Liang,Wang, Yongkui,Sun, Kewen.

[12]Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Dai, Juan,Deng, Dongli,Zhang, Jinzhong,Deng, Fei,He, Shuang,Deng, Dongli,Yuan, Yali,Zhang, Jinzhong.

[13]Supramolecular imprinted electrochemical sensor for the neonicotinoid insecticide imidacloprid based on double amplification by Pt-In catalytic nanoparticles and a Bromophenol blue doped molecularly imprinted film. Li, Shuhuai,Liu, Chunhua,Yin, Guihao,Luo, Jinhui,Zhang, Zhenshan,Li, Shuhuai,Liu, Chunhua,Yin, Guihao,Luo, Jinhui,Zhang, Zhenshan,Xie, Yixian.

[14]Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,He, Shiying. 2017

[15]Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions. Zhu, Zhenke,Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke. 2013

[16]Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol. Wu, Dongming,Yun, Yonghuan,Jiang, Lei,Wu, Chunyuan,Jiang, Lei,Wu, Chunyuan,Wu, Chunyuan. 2018

[17]2-Nitrophenol reduction promoted by S-putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter. Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke,Zhu, Zhenke. 2014

[18]Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC-MS and thermally assisted hydrolysis and methylation. Jiang, Tao,Liang, Jian,Wei, Shiqiang,Wang, Dingyong,Jiang, Tao,Kaal, Joeri,Kaal, Joeri,Zhang, Yaoling,Green, Nelson W.. 2017

[19]Suspension stability and aggregation of multi-walled carbon nanotubes as affected by dissolved organic matters extracted from agricultural wastes. Li, Helian,Qiu, Yanhua,Wang, Xiaonuan,Liu, Wenhao,Ma, Yibing,Li, Helian,Chen, Guangcai,Xing, Baoshan,Chen, Guangcai,Ma, Yibing.

[20]Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Jiang, Tao,Wang, Dingyong,Gao, Jie,Li, Chuxian,Jiang, Tao,Skyllberg, Ulf,Tang, Jianhui,Bjorn, Erik,Green, Nelson W..

作者其他论文 更多>>