Anaerobic Transformation of DDT Related to Iron(III) Reduction and Microbial Community Structure in Paddy Soils

文献类型: 外文期刊

第一作者: Chen, Manjia

作者: Chen, Manjia;Cao, Fang;Li, Fangbai;Liu, Chengshuai;Tong, Hui;Wu, Weijian;Hu, Min

作者机构:

关键词: DDT;reductive dechlorination;cyclic voltammograms;microbial community;lactate;anthraquinone-2,6-disulfonate

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2013 年 61 卷 9 期

页码:

收录情况: SCI

摘要: We studied the mechanisms of microbial transformation in functional bacteria on 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in two different field soils, Haiyan (FLY) and Chenghai (CH). The results showed that microbial activities had a steady dechlorination effect on DDT and its metabolites (DDx). Adding lactate or glucose as carbon sources increased the amount of Desulfuromonas, Sedimentibacter, and Clostridium bacteria, which led to an increase in adsorbed Fe(II) and resulted in increased DDT transformation rates. The electron shuttle of anthraquinone-2,6-disulfonic disodium salt resulted in an increase in the negative potential of soil by mediating the electron transfer from the bacteria to the DDT. Moreover, the DDT-degrading bacteria in the CH soil were more abundant than those in the HY soil, which led to higher DDT transformation rates in the CH soil. The most stable compound of DDx was 1,1-dichloro-2,2-bis(p-chloro-phenyl)ethane, which also was the major dechlorination metabolite of DDT, and 1-chloro-2,2-bis-(p-chlorophenyl)ethane and 4,4'-dichlorobenzo-phenone were found to be the terminal metabolites in the anaerobic soils.

分类号:

  • 相关文献

[1]Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Li, F. B.,Li, X. M.,Zhou, S. G.,Zhuang, L.,Cao, F.,Huang, D. Y.,Xu, W.,Liu, T. X.,Li, X. M.,Cao, F.,Feng, C. H.,Li, X. M.,Cao, F..

[2]Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Chen, Manjia,Tao, Liang,Li, Fangbai,Lan, Qing. 2014

[3]Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions. Zhu, Zhenke,Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke. 2013

[4]Effect of hypoxia on the blood of large yellow croaker (Pseudosciaena crocea). Gu Xiaolian,Xu Zhaoli. 2011

[5]Kinetics and thermodynamics of glucoamylase inhibition by lactate during fermentable sugar production from food waste. Wang, Qun Hui,Liu, Ying Ying,Ma, Hong Zhi,Wang, Xiao Qiang,Wang, Xu Ming.

[6]Biostimulation of Indigenous Microbial Communities for Anaerobic Transformation of Pentachlorophenol in Paddy Soils of Southern China. Chen, Manjia,Hu, Min,Li, Fangbai,Liu, Chengshuai,Wu, Weijian,Tong, Hui,Chen, Manjia,Wu, Weijian,Tong, Hui,Shih, Kaimin,Chen, Manjia,Wu, Weijian,Tong, Hui.

[7]Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Zhang, Peidong,Zhang, Xiumei,Li, Jian,Huang, Guoqiang.

[8]Effect of Aeromonas hydrophila on Reductive Dechlorination of DDTs by Zero-Valent Iron. Cao, F.,Li, F. B.,Liu, T. X.,Huang, D. Y.,Wu, C. Y.,Li, X. M.,Cao, F.,Wu, C. Y.,Feng, C. H.,Cao, F.. 2010

[9]Residues and sources of DDT and HCH in agricultural soils in the suburb of Beijing, China. Li, Xinrong,Zhao, Tongke,Li, Shunjiang,Zhang, Chengjun. 2014

[10]Chlorinated and brominated organic pollutants in shellfish from the Yellow Sea and East China Sea. Yin, Ge,Asplund, Lillemor,Bergman, Ake,Qiu, Yanling,Zhou, Yihui,Wang, Hua,Bergman, Ake,Yao, Zongli,Jiang, Jianbin.

[11]Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds. Li XiaoMin,Li FangBai,Zhou ShunGui,Liu TongXu,Li XiaoMin,Li YongTao,Feng ChunHua,Li XiaoMin. 2009

[12]Enhanced Biotransformation of DDTs by an Iron- and Humic-Reducing Bacteria Aeromonas hydrophila HS01 upon Addition of Goethite and Anthraquinone-2,6-Disulphonic Disodium Salt (AQDS). Cao, Fang,Liu, Tong Xu,Wu, Chun Yuan,Li, Fang Bai,Li, Xiao Min,Yu, Huan Yun,Tong, Hui,Chen, Man Jia,Cao, Fang,Cao, Fang.

[13]A humic substance analogue AQDS stimulates Geobacter sp abundance and enhances pentachlorophenol transformation in a paddy soil. Chen, Manjia,Chen, Dandan,Li, Fangbai,Qiao, Jiangtao,Tong, Hui,Liu, Chengshuai.

[14]Iron Reduction Coupled to Reductive Dechlorination in Red Soil: A Review. Chen, Manjia,Liu, Chengshuai,Li, Xiaomin,Li, Fangbai,Huang, Weilin.

[15]Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Ying, Guang-Guo,Ying, Guang-Guo,Yu, Xiang-Yang,Kookana, Rai S.,Yu, Xiang-Yang.

[16]Low-Molecular-Weight Chitosan Supplementation Increases the Population of Prevotella in the Cecal Contents of Weanling Pigs. Yu, Ting,Wang, Yu,Wang, Zhiling,Ma, Xianyong,Zheng, Chuntian,Yu, Ting,Chen, Zhuang,Wang, Yu,Chen, Shicheng,Hu, Min,Wu, Guozhong. 2017

[17]Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction. Yu, Huan-Yun,Chen, Peng-cheng,Li, Fang-bai,Chen, Man-jia,Hu, Min,Wang, Yong-kui,Ouyang, Xiaoguang. 2014

[18]Changes in soil microbial biomass and community structure with addition of contrasting types of plant litter in a semiarid grassland ecosystem. Jin, Hongmei,Sun, Osbert Jianxin,Jin, Hongmei,Sun, Osbert Jianxin,Jin, Hongmei,Liu, Jianfeng,Jin, Hongmei,Liu, Jianfeng. 2010

[19]Metabolic and Phylogenetic Profile of Bacterial Community in Guishan Coastal Water (Pearl River Estuary), South China Sea. Hu Xiaojuan,Liu Qing,Yang Yufeng,Hu Xiaojuan,Li Zhuojia,Cao Yucheng,He Zhili,He Zhili,Gong Yingxue,Yang Yufeng. 2014

[20]Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Yu, Miao,Wu, Chuanfu,Wang, Qunhui,Ren, Yuanyuan,Sun, Xiaohong,Li, Yu-You. 2018

作者其他论文 更多>>