Comparison of the Genome-Wide DNA Methylation Profiles between Fast-Growing and Slow-Growing Broilers

文献类型: 外文期刊

第一作者: Hu, Yongsheng

作者: Hu, Yongsheng;Xu, Haiping;Li, Zhenhui;Zheng, Xuejuan;Jia, Xinzheng;Nie, Qinghua;Zhang, Xiquan;Hu, Yongsheng;Xu, Haiping;Li, Zhenhui;Zheng, Xuejuan;Jia, Xinzheng;Nie, Qinghua;Zhang, Xiquan;Hu, Yongsheng;Xu, Haiping;Li, Zhenhui;Zheng, Xuejuan;Jia, Xinzheng;Nie, Qinghua;Zhang, Xiquan

作者机构:

期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )

ISSN: 1932-6203

年卷期: 2013 年 8 卷 2 期

页码:

收录情况: SCI

摘要: Introduction: Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast-and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRRh; WRRl) and that of Xinhua Chickens (XHh; XHl) at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200-300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRRh Vs. WRRl, 5,599 of XHh Vs. XHl, 4,204 of WRRh Vs. XHh, as well as 7,301 of WRRl Vs. XHl. Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRRh Vs. WRRl and XHh Vs. XHl), whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRRh Vs. XHh and WRRl Vs. XHl). Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. Conclusions: This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation level.

分类号:

  • 相关文献
作者其他论文 更多>>
  • The transmembrane protein TMEM182 promotes fat deposition and alters metabolomics and lipidomics

    作者:Chen, Genghua;Lin, Zetong;Peng, Haoqi;Zhang, Shuai;Zhang, Zihao;Zhang, Xiquan;Nie, Qinghua;Luo, Wen;Chen, Genghua;Lin, Zetong;Peng, Haoqi;Zhang, Shuai;Zhang, Zihao;Zhang, Xiquan;Nie, Qinghua;Chen, Genghua;Lin, Zetong;Peng, Haoqi;Zhang, Shuai;Zhang, Zihao;Zhang, Xiquan;Nie, Qinghua

    关键词:TMEM182; Fat formation; Metabolomics; Lipidomics

  • Using multiomics to explore the weight differences between genders in Muscovy ducks

    作者:Tian, Jinghong;Tan, Liangtian;Wei, Shenghua;Yao, Zipei;Xu, Yibin;Nie, Qinghua;Tian, Jinghong;Tan, Liangtian;Wei, Shenghua;Yao, Zipei;Xu, Yibin;Nie, Qinghua;Tian, Jinghong;Tan, Liangtian;Wei, Shenghua;Yao, Zipei;Xu, Yibin;Nie, Qinghua;Tian, Jinghong;Tan, Liangtian;Wei, Shenghua;Yao, Zipei;Xu, Yibin;Nie, Qinghua;Zhu, Weijian;Ji, Congliang

    关键词:Muscovy duck; sexual dimorphism; growth and development; RNA-seq; 16S rRNA sequencing technology

  • PMAIP1 promotes J subgroup avian leukosis virus replication by regulating mitochondrial function

    作者:Zhao, Yongxia;Zhao, Changbin;Pan, Ming;Mo, Guodong;Liao, Zhiying;Zhang, Xiquan;Zhang, Dexiang;Li, Hongmei;Zhao, Yongxia;Zhao, Changbin;Deng, Yuelin;Pan, Ming;Mo, Guodong;Liao, Zhiying;Zhang, Xiquan;Zhang, Dexiang;Li, Hongmei;Zhao, Yongxia;Zhao, Changbin;Deng, Yuelin;Pan, Ming;Mo, Guodong;Liao, Zhiying;Zhang, Xiquan;Zhang, Dexiang;Li, Hongmei;Zhao, Yongxia;Zhao, Changbin;Deng, Yuelin;Pan, Ming;Mo, Guodong;Liao, Zhiying;Zhang, Xiquan;Zhang, Dexiang;Li, Hongmei;Deng, Yuelin

    关键词:ALV-J; PMAIP1; mitochondrial function; immune; DF-1

  • Live chicken body fat measurement technology based on bio-electrical impedance

    作者:Liang, Jinping;Li, Zhenhui;Nie, Qinghua;Zhang, Dexiang;Zhang, Xiquan;Li, Hongmei;Zuo, Jiaming;Cheng, Shangshang;Li, Zhen;Zuo, Jiaming;Cheng, Shangshang;Li, Zhen;Liang, Jinping;Li, Zhenhui;Nie, Qinghua;Zhang, Dexiang;Zhang, Xiquan;Li, Hongmei;Liang, Jinping;Li, Zhenhui;Nie, Qinghua;Zhang, Dexiang;Zhang, Xiquan;Li, Hongmei;Liang, Jinping;Li, Zhenhui;Nie, Qinghua;Zhang, Dexiang;Zhang, Xiquan;Li, Hongmei;Deng, Yuelin

    关键词:BIA; Electrical impedance; Fat content; Broilers

  • Whole-transcriptome sequencing revealed the ceRNA regulatory network during the proliferation and differentiation of goose myoblast

    作者:Zhang, Xiquan;Luo, Wen;Zhang, Xiquan;Luo, Wen;Xiao, Liangchao;Chen, Jiahui;He, Xueying;Zhang, Xiquan;Luo, Wen;Xiao, Liangchao;Chen, Jiahui;He, Xueying;Zhang, Xiquan;Luo, Wen;Xiao, Liangchao;Chen, Jiahui;He, Xueying;Zhang, Xiquan;Luo, Wen

    关键词:Shitou goose; skeletal muscle; whole-transcriptome sequencing; lncRNA; ceRNA network

  • LncEDCH1 g.1703613 T>C regulates chicken carcass traits by targeting miR-196-2-3p

    作者:Yuan, Rongshuai;Cai, Bolin;Ma, Manting;Zhao, Changbin;Xian, Yuanrong;Nie, Qinghua;Zhang, Xiquan;Zhang, Dexiang;Zhang, Dexiang

    关键词:LncEDCH1; miR-196-2-3p; single nucleotide polymorphism; carcass trait; chicken

  • Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population

    作者:Pan, Rongyang;Qi, Lin;Xu, Zhenqiang;Zhang, Dexiang;Nie, Qinghua;Zhang, Xiquan;Luo, Wen;Pan, Rongyang;Qi, Lin;Xu, Zhenqiang;Zhang, Dexiang;Nie, Qinghua;Zhang, Xiquan;Luo, Wen;Pan, Rongyang;Pan, Rongyang;Qi, Lin;Zhang, Dexiang;Nie, Qinghua;Zhang, Xiquan;Luo, Wen;Pan, Rongyang;Qi, Lin;Xu, Zhenqiang;Zhang, Dexiang;Nie, Qinghua;Zhang, Xiquan;Luo, Wen;Pan, Rongyang;Qi, Lin;Xu, Zhenqiang;Zhang, Dexiang;Nie, Qinghua;Zhang, Xiquan;Luo, Wen

    关键词:Chinese yellow-feathered chicken; weighted single-step GWAS; carcass traits; SNP