Effect of Aeromonas hydrophila on Reductive Dechlorination of DDTs by Zero-Valent Iron

文献类型: 外文期刊

第一作者: Cao, F.

作者: Cao, F.;Li, F. B.;Liu, T. X.;Huang, D. Y.;Wu, C. Y.;Li, X. M.;Cao, F.;Wu, C. Y.;Feng, C. H.;Cao, F.

作者机构:

关键词: DDT;zero-valent Iron;Aeromonas hydrophila;dechlorination

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2010 年 58 卷 23 期

页码:

收录情况: SCI

摘要: This study presents a reductive transformation method that combines zerovalent iron (ZVI) and Aeromonas hydrophila HS01 with iron oxide reduction property to degrade DDT (1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) under anoxic conditions. The results suggest that HS01 has weak capability in terms of reducing DDT to DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) and nearly failed to reduce DDD or its transformed intermediates. The coexistence of ZVI and HS01 results in a slight enhancement of DDT degradation compared with the ZVI system alone. The reduction of intermediates by ZVI, however, can be obviously accelerated in the presence of HS01, and the addition of,anthraquinone-2,6-disulfonic disodium salt (AQDS) can accelerate the transformation rates further, especially for intermediate reduction. The analysis of the amount and electrochemical properties of Fe(III)/Fe(II) indicates that the presence of HS01 with or without AQDS is beneficial to the reduction of Fe(III) to Fe(II), resulting in the removal of passivating ferric precipitates on the ZVI surface. A mechanism and pathway that clarify the roles of ZVI, HS01, and AQDS in the ZVI + HS01 + AQDS system for DDT transformation are proposed. The quick removal of surface ferric precipitates is thought to be the reason for the enhancement of the transformation of DDT and its intermediates.

分类号:

  • 相关文献

[1]Microbial and Abiotic Interactions between Transformation of Reducible Pollutants and Fe(II)/(III) Cycles. Li, Fangbai,Zhou, Shungui,Li, Xiaomin,Wu, Chunyuan,Tao, Liang. 2010

[2]Kocuria rosea HN01, a newly alkaliphilic humus-reducing bacterium isolated from cassava dreg compost. Wu, Chun-Yuan,Chen, Nan,Li, Hong,Li, Qin-Fen,Chen, Nan,Li, Hong. 2014

[3]Dechlorination of p,p '-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp BXM. Bao, Peng,Hu, Zheng-Yi,Ba, Yu-Xin,Hua, Jing,Zhu, Chun-You,Bao, Peng,Wang, Xin-Jun,Chen, Jian,Zhong, Min,Wu, Chun-Yan. 2012

[4]Residues and sources of DDT and HCH in agricultural soils in the suburb of Beijing, China. Li, Xinrong,Zhao, Tongke,Li, Shunjiang,Zhang, Chengjun. 2014

[5]Chlorinated and brominated organic pollutants in shellfish from the Yellow Sea and East China Sea. Yin, Ge,Asplund, Lillemor,Bergman, Ake,Qiu, Yanling,Zhou, Yihui,Wang, Hua,Bergman, Ake,Yao, Zongli,Jiang, Jianbin.

[6]Anaerobic Transformation of DDT Related to Iron(III) Reduction and Microbial Community Structure in Paddy Soils. Chen, Manjia,Cao, Fang,Li, Fangbai,Liu, Chengshuai,Tong, Hui,Wu, Weijian,Hu, Min. 2013

[7]Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. Wu, Chun-Yuan,Zhuang, Li,Zhou, Shun-Gui,Li, Fang-Bai,Li, Xiao-Min,Wu, Chun-Yuan,Li, Xiao-Min,Wu, Chun-Yuan,Li, Xiao-Min.

[8]Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Li, F. B.,Li, X. M.,Zhou, S. G.,Zhuang, L.,Cao, F.,Huang, D. Y.,Xu, W.,Liu, T. X.,Li, X. M.,Cao, F.,Feng, C. H.,Li, X. M.,Cao, F..

[9]Identification of two combined genes responsible for dechlorination of 3,5,6-trichloro-2-pyridinol (TCP) in Cupriavidus pauculus P2. Cao, Li,Wu, Guang,Li, Mingxing,Jiang, Jiandong,He, Jian,Li, Shunpeng,Hong, Qing,Xu, Jianhong.

[10]Comparative Study of Antibacterial Properties of Emodin and Enrofloxacin Against Aeromonas hydrophila. Zhang, Yuan-yuan,Liu, Bo,Ge, Xian-ping,Xie, Jun,Zhang, Yuan-yuan,Liu, Bo,Ge, Xian-ping,Xie, Jun,Ren, Mingchun,Chen, Ruli,Zhou, Qunlan,Pan, Liangkun,Zhang, Yuan-yuan,Liu, Wen-bin. 2014

[11]1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. Tang, Lining,Huang, Kai,Sun, Lei,Huang, Qing,Bi, Yanjun,Xie, Jun,Yu, Dan. 2017

[12]Transcriptome analysis of the spleen of the darkbarbel catfish Pelteobagrus vachellii in response to Aeromonas hydrophila infection. Wen, Zhengyong,Yuan, Dengyue,Shao, Ting,Wang, Jun,Li, Huatao,Gong, Quan. 2017

[13]Catecholamine-Stimulated Growth of Aeromonas hydrophila Requires the TonB2 Energy Transduction System but Is Independent of the Amonabactin Siderophore. Dong, Yuhao,Liu, Jin,Pang, Maoda,Du, Hechao,Wang, Nannan,Awan, Furqan,Lu, Chengping,Liu, Yongjie,Pang, Maoda. 2016

[14]Grass carp (Ctenopharyngodon idellus) infected with multiple strains of Aeromonas hydrophila. Cao, Haipeng,Yang, Xianle,Zheng, Weidong. 2012

[15]Identification of Aeromonas hydrophila Genes Preferentially Expressed after Phagocytosis by Tetrahymena and Involvement of Methionine Sulfoxide Reductases. Pang, Maoda,Lin, Xiaoqin,Liu, Jin,Guo, Changming,Gao, Shanshan,Du, Hechao,Lu, Chengping,Liu, Yongjie,Pang, Maoda. 2016

[16]Effects of Antibacterial Peptide Extracted from Bacillus subtilis fmbJ on the Growth, Physiological Response and Disease Resistance of Megalobrama amblycephala. He, Yijin,Liu, Bo,Xie, Jun,Ge, Xianping,Xu, Pao,Lu, Ying,Lu, Fengxia,Lu, Zhaoxin. 2014

[17]Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila. Lu, Chunxia,Wang, Hongxin,Lv, Wenping,Lou, Zaixiang,Xu, Pao,Zhu, Jian,Xie, Jun,Liu, Bo. 2011

[18]Effects of Dietary Vitamin C on the Physiological Responses and Disease Resistance to Ph Stress and Aeromonas Hydrophila Infection of Megalobrama Amblycephala. Liu, Bo,Wan, Jinjuan,Ge, Xianping,Xie, Jun,Liu, Bo,Ge, Xianping,Xie, Jun,Zhou, Qunlan,Miao, Linghong,Ren, Mingchun,Pan, Liangkun. 2016

[19]Comparative analysis of sequence feature and expression of two heat shock cognate 70 genes in mandarin fish Siniperca chuatsi. Wang, Pengfei,Xu, Peng,Zeng, Shuang,Zhou, Lei,Zeng, Lei,Li, Guifeng,Wang, Pengfei,Xu, Peng,Zeng, Shuang,Zhou, Lei,Zeng, Lei,Li, Guifeng,Wang, Pengfei.

[20]Effects of pathogenic bacterial challenge after acute sublethal ammonia-N exposure on heat shock protein 70 expression in Botia reevesae. Qi, Zemin,Zou, Yuanchao,Yue, Xingjian,Xie, Biwen,Zhao, Daxian,Gong, Quan.

作者其他论文 更多>>